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Abstract: The evaluation of the web-browsing quality of experience (QoE) is difficult to complete through traditional methods
(e.g. deducing formulas or setting thresholds) due to the diversity of websites and their contents. To evaluate web-browsing QoE
through a general way, the authors propose a web QoE evaluation architecture based on machine learning, consisting of two
parts: traffic classification sub-system and QoE prediction sub-system. When evaluating user experience, traffic classification
sub-system first classifies the packets generated by visiting a website into a flowthrough some fields in the packet header, to
model each website separately. The traffic classification accuracy of > 2000 packets over six websites reaches 96.63%. Then, in
the network layer, the traffic metric cumulative traffic volume is generated from the size and arrival time of packets. When a user
visits a web page, their regression model predicts the above-the-fold time (ATF) and thus QoE. The output of the regression
model is an exact ATF value that is mapped to user experience. In addition, reversing input variables further improves the
model, which is evaluated on two popular websites. The QoE prediction results of the improved method for 5400 visits are
obtained within 0.0975 s, reaching 0.9 R2 score.

1 Introduction
A study has found that interactive hypertext transfer protocol
(HTTP) traffic once again dominated residential broadband internet
traffic, accounting for > 50% of the traffic [1] and it gradually
becomes the de facto narrow waist of the internet. People often
visit varieties of websites at work or in their precious leisure time,
including search engines, video sites, and social networking sites.
Whether the websites can be loaded successfully within a short
time is of crucial importance. Also, predictably, even tiny network
delay of page loading can ruin the user experience. The longer
users have to wait for the web page to load, the more likely they
are to be unsatisfied with the service [2].

Akamai Technologies, Inc. found the correlation of e-commerce
website performance and an online shopper's behaviour [3]. The
experiment of 1048 online shoppers demonstrates that 2 s is a new
threshold, after which the consumers would become impatient, and
if the pages still fail to load 40% of consumers will wait no more
than 3 s. According to a 2015 article [4], Amazon has calculated
that only 1 s of page loading would cost $1.6 billion in sales a year.
Google has calculated that the reduction of search results by mere
four-tenths of a second could lead to the loss of 8 million searches
per day, which means the loss of millions of online ads. Therefore,
the slow page loading causes not only inconvenience to the users
but also losses to internet content providers.

Quality of service (QoS), which is aimed at helping the
information and communication technology (ICT) engineers
develop their products and provide better services, is widely used
in measuring the network's capability [5, 6]. To the end, diverse
traffic monitoring and load balancing approaches [7, 8] are
proposed to reduce network congestion, especially in data centre
networks. However, the relation between user experience and QoS
is not a simple positive correlation, which means high QoS does
not necessarily lead to a perfect user experience. To obtain a more
accurate user experience, the concept of quality of experience
(QoE) is concerned as an alternative to QoS by the ICT industry
and internet service providers (ISPs) in recent years. ISP and

device vendors can have an estimation of the current user
experience anywhere in the network by using device traffic to
create a hypothetical QoE prediction model [9–15].

However, it is very difficult to evaluate the web-browsing QoE
in real-time on a running network. Monitoring network-level
performance criteria are easier and more usual. So the problem is
how to correlate the network-level QoS to the QoE perceived by
the users. Casas et al. [16] predicted the YouTube stalling events
with network-layer data alone, by calculating the estimated buffer
size with several formulas and comparing it with the empirical
thresholds. Their system could only evaluate the user experience of
YouTube because excessive specific thresholds and formulas were
used for estimating QoE accurately [16].

Web-browsing QoE mainly depends on the above-the-fold time
(ATF), i.e. the loading time of content that the screen directly
displays [17, 18]. Generally, the longer the ATF is, the worse the
QoE will be. Numerous studies that predict web browsing QoE are
based on ATF or its variants [19–22]. Although predicting QoE
through ATF works well, getting ATF is not an easy task since ATF
is a subjective metric related to the web page loading. Most
existing methods get ATF through analysis of the video of page
loading. This mode, however, carries many disadvantages: (a)
running on the client-side requires user's cooperation to capture
video of page loading; (b) video analysis takes a great deal of time;
(c) it takes up network bandwidth and storage space.

In such a situation, we introduce a data-driven web-browsing
QoE prediction system, which is based on machine learning (ML)
and can predict the web QoE on the gateway side. This enables
close collaboration between ISPs and content providers to serve
their clients. Our system consists of the traffic classification sub-
system and the QoE prediction sub-system. The traffic
classification sub-system can classify packets into flows belonging
to different websites so that we can independently model each
website. It was declared in [23] that about 90% of the network
traffic was a small number of large-sized elephant flows, while the
remaining 10% was a large number of small-sized mice flows. We
can filter out the mice flows and then only predict QoE of elephant
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flows. After that, we get information from transmission control
protocol (TCP) flows occurring when the user visits a website, and
then characterise the traffic by the proposed traffic metric:
cumulative traffic volume (CTV). CTV has different forms in
different network conditions. Also, there will be different ATFs in
different network conditions. Generally, the smaller the ATF, the
better the network condition and the user experience. Therefore, we
can predict ATF by identifying the forms of CTV. The prediction
can be done with little application-layer data, which proves that our
system can be deployed on the gateway. After training, the
regression model in the QoE prediction sub-system can get the
exact ATF prediction value, such as ATF = 1.38 s. Finally, ATF
can be mapped to the user experience QoE by the mapping
function or expert model [21]. In the QoE prediction sub-system,
we propose three supervised learning models for ATF prediction
instead of video analysis. The trained model takes up extremely
little storage space, with a minimum of 18 kB and a maximum of 1 
MB. Furthermore, the system works efficiently and can predict
ATF in a very short time with high accuracy. Specifically, when our
model predicts 5400 unknown samples within 0.0975 s, the R2

score is more than 0.9 (R2 score = 1 means no error). In other
words, using a computer like ours, QoE prediction of a flow can be
completed within 0.00018 s, demonstrating that our system can
predict QoE online.

Our major contributions are summarised as follows:

• We have proposed an ISP-level general method that requires little
application-layer data and takes up extremely little storage space,
allowing equipment vendors and ISPs to deploy our model on
network intermediate devices, to evaluate the QoE when users visit
a web page. In particular, our approach is data-driven, which does
not require a manual parameter setting, and we can update the
model in real-time by adding new data to adapt the model to the
changing website contents (Section 3).
• We have designed the traffic classification sub-system that can
classify different website packets based on various fields in the
header. The system can classify > 2000 packets belonging to six
websites with an accuracy of 96.63% (Section 4).
• We have developed three models based on our architecture to
predict the exact ATF value, e.g. ATF = 0.38 s. Since the ML
method does not need formula deduction or threshold setting
according to the website content as traditional methods do, our
method is content-independent and all parameters for websites or
contents can be trained with one unified model (Section 5).

2 Related work
2.1 Traffic classification

The process of categorising packets into ‘flows’ in an internet
router is called packet classification. Gupta and McKeown [24]
described the algorithms representing each category and discussed
which type of algorithm might be suitable for different
applications. Pan et al. [25] implemented a high-speed traffic
classification system based on application-layer patterns with field-
programmable gate array. It was declared in [23] that about 90% of
network traffic is a small number of large-sized elephant flows and
the remaining 10% is a large number of small-sized mice flows.
After classifying the packets into flows, we can filter out the mice
flows. Therefore, only the user experience corresponding to the
elephant flow will be analysed. Identifying elephant flows is of
great importance in developing effective and efficient traffic
engineering schemes. On the basis of Bayes' theorem, Mori et al.
[26] identified elephant flows in periodically sampled packets.
First, they introduced a prior distribution of the packet number of
each flow. Next, they found the number of sampled packets of flow
was greater than expected. Eventually, the flow was identified as
an elephant flow.

The methods above can filter out mice flows on the Internet.
Inspired by these algorithms, we have designed our packet
classification sub-system.

2.2 Traditional methods

QoE, which can intuitively reflect the user perception of loading a
web page, is difficult to quantify, so the research community is
committed to finding an effective QoE evaluation method, hoping
to improve the user experience through precise QoE evaluation.
Three passive probing methods were put forward by Schatz et al.
[27] that used network-layer data to predict stalling patterns
through formula deductions when users are watching YouTube
videos. They calculated the total stalling time T , the number of
stalling events N, and the duration or length of a stalling event L
based on numerous formulas. Using data from the network layer,
they calculated the stalling events according to substantive
formulas and empirical thresholds derived from large measurement
activities. Staehle et al. [28] proposed a client tool to monitor
YouTube traffic at the application layer, which could make
predictions of the pause in the video by estimating the size of the
playback buffer. Casas et al. [16] introduced an approach to
measure YouTube pause at the network layer. With various
formulas, they estimated the size of the YouTube playback buffer.
They then predicted the video's pause by comparison of the
empirical threshold and estimated buffer size. Bagga et al. [29]
studied how service consumers could benefit by selecting the
appropriate Web Service based on QoS through multi-criteria
decision-making (MCDM). They tended to assist the researchers in
two conducts: firstly, observe the performance of different MCDM
methods for plenty of alternatives and attributes. Secondly,
perceive the possible deviation in the ranking from these methods.
HoBfeld et al. [30] discussed the impact of memory effect on the
web QoE modelling. They presented a QoE model for web traffic,
which took into account the memory effect and temporal dynamics.
Then, three different QoE models were proposed based on the
memory effect to improve basic models.

All the above studies predict the QoE by formula deductions
and threshold settings, which does not apply to our issue. Their
mathematical formulas and thresholds increase complexity and
inflexibility, weakening universality to some extent. So, for solving
generalised issues, fewer formulas or thresholds should be
introduced. Inspired by recent advancements in classification
problems and network problems of ML, we consider building
systems to evaluate user experience with multitudes of labelled
data.

2.3 ML methods

Casas et al. [31] proposed an unsupervised network intrusion
detection system (UNIDS), which detected unknown network
attacks without labelled traffic or training. UNIDS employs a novel
unsupervised outlier detection method based on sub-space
clustering and multiple evidence accumulation techniques to
identify different network intrusions and attacks. However, it is
hard to apply clustering to the classification of time series due to
the large dimensions of the latter. Ben-Letaifa [14] analysed the
impact of network behaviour on web service quality and proposed
the QoE tool based on prediction algorithms and deep learning.
The data set they used encompassed personal attributes (age, genre,
and look), web page attributes (site type, content, and Index of site
content), and network conditions (downstream speed, bandwidth,
and delay). They obtained the merged dataset using the framework
Pandas of Python. Then, six common ML algorithms were trained
with the dataset through the framework Keras of Python. The
model with the highest accuracy was gradient boosting, with an
accuracy of 0.66087. However, the model cannot run on the
gateway side because it requires user attributes that are difficult to
obtain on the gateway side. Mushtaq et al. [32] analysed the impact
of parameters such as QoS on video streaming service QoE, and
assessed how ML methods could help establish a precise and
objective QoE model that connected low-level parameters with
high-level user experience. Luo et al. [33] presented a data-driven
scheme for industrial Internet of things QoS loss prediction based
on kernel least mean square (KLMS). They found the relevant QoS
values for every known QoS entry from similar service users and
web service items. Then, using the KLMS, they delved the
relationships between all the known QoS data and their
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corresponding highest-similarity QoS data. Wang et al. [34]
proposed a data-driven architecture that enhanced the personalised
QoE of 5G networks. Zhang et al. [35] proposed a long-term QoS
forecasting approach based on neural networks, but their work
focused on long-term QoS prediction. Liu et al. [36] proposed a
collaborative QoS prediction framework for privacy preservation,
which could guarantee the accurate QoS prediction while
protecting users' privacy.

These studies did not use time series analysis to extract
meaningful features from the data. However, their work
demonstrates the possibility of using ML algorithms for QoE
analysis.

2.4 ATF and its variants

Sackl et al. [37] defined new key performance indicators, capturing
the impact of bandwidth fluctuations on the user experience
through subjective laboratory research. Their research suggests that
web browsing QoE is less sensitive to interruptions as users do not
always detect interruptions. Page loading time (PLT) used to be a
popular metric for web-browsing QoE prediction, but it is not the
perfect method for user-perceived PLT (UserPerceivedPLT). First,
the user may only care about the loading time of the visible
portion, which means the PLT may be overestimated. Second, the
script may continue to load objects after the OnLoad fires, leading
to the underestimation of PLT [20]. A new metric proposed by
Google is ATF time [19], defined as the rendering time of the
visible portion of the web page. After that, ATF and its variants are
used by many researchers for web-browsing QoE prediction.
Varvello et al. [20] argued that the existing PLT indicator was
merely a partial reflection of the participant's experience, and they
proposed a new indicator to reduce the gap between OnLoad and
UserPerceivedPLT. Da-Hora et al. [21] made a comprehensive
assessment of the performance of the user experience prediction,
using all indicators (PLT, ATF, and its variants such as IIATF)
through expert models (ITU-T, IQX etc.) and different ML
algorithms. Their results indicated that the best correlation with
MOS was IIATF (0.85), while PLT ranked seventh (0.81). These
results have confirmed the possibility of using ATF time to
represent UserPerceivedPLT.

All the above methods estimate ATF by analysing the video
loaded on the page, which is more accurate but requires more time
and resources. In such a context, we propose our system that can
predict ATF with a large amount of network-layer data and a small
amount of application-layer data. Although it cannot achieve fine-
grained results as the video analysis method does, our approach
performs outstandingly well on coarse-grained prediction.

In this work, for web-browsing QoE prediction, we predict the
continuous ATF instead of the discrete ATF as we did in the
previous poster version of WebQMon.ai [38]. To predict QoE by
the ML model, we have implemented a traffic classification sub-
system to aggregate packets of the same web page. The most
significant difference between the two articles is that one adopts a
regression model, while the other adopts a classification model to
solve the problem. Regression model means the more accurate
prediction of ATF, which could predict the exact value of ATF, e.g.
ATF = 1.38 s, while WebQMon.ai could only predict whether ATF
falls in a certain range, e.g. < 3 s, so the regression model is more
conducive to further prediction of user experience.

3 Architecture
3.1 System architecture

Web browsing QoE is largely determined by the ATF that the user
experiences. To this end, we put forward our system for ATF
prediction of different web pages. As shown in Fig. 1, network-
level data is collected from the Edge Router or Gateway. The
traffic classification subsystem distinguishes packets from different
websites as depicted in Fig. 1. Then, raw data is transformed into a
useful format as shown in the QoE prediction sub-system in Fig. 1.
After that, the processed data is used for the training of different
ML models, such as fully connected neural networks and long-
short-term memory (LSTM) neural networks. Different prediction
models are essential since different webpages have different
contents and attributions. Finally, the predicted ATF is obtained,
which can be mapped to the web-browsing QoE through existing
functions [21]. In Section 5, to predict web-browsing QoE, we
propose three methods based on our architecture, using different
input variables and ML algorithms.

For traditional methods, different mathematical formulations or
thresholds have to be set for different sites due to the diversity of
web content. However, machine learning (ML) models can be
trained and/or updated with data reflecting the diversities of
contents so that different/new contexts can be learned and adapted.

3.2 Dataset and data pre-processing

Traffic classification. Data, the basic elements of ML, determines
the quality of the model to some extent. For maximisation of the
prediction accuracy, prediction models are built for each site.
Specifically, video sites have a great number of images with few
texts, while new sites have substantial texts. Different contents
inevitably lead to different numbers and sizes of requests and
responses, resulting in the failure to use the same model to predict
ATF accurately. The purpose of the traffic classification sub-system
is to obtain data for each website separately, which lays a solid
foundation for subsequent data analysis.

Our system is trained and tested with the dataset captured from
TCP flows appearing when the user visits a page. All the TCP
traffic can be easily obtained at the Edge Router or Gateway as
depicted in Fig. 1. The traffic classification sub-system can
aggregate related packets into a cluster by multiple iterative
classifications through the packet headers. Eventually, each cluster
represents the packets of the same websites that the user visits. The
specific classification algorithm will be detailed in Section 4.

Dataset. Through the traffic classification sub-system, the
traffic generated by visiting a page can be aggregated into a cluster.
Our system works with the size and arrival time of packets, which
have a direct bearing on the network conditions. Specifically, TCP
segments reassembling and application-layer data delving are
unnecessary since the contents of TCP traffic are not in
consideration. Obviously, the packets arrive quickly when the
network is in good condition (high download speeds, low latency,

Fig. 1  System architecture
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and no packet loss). Otherwise (low download speeds, high
latency, or severe packet loss), they arrive slowly. We get ATF by a
Chrome plugin (named Approximate ATF, downloaded from
Chrome web store in June), which can estimate the ATF time of
page loading by website content analysis. The ATF time we used,
such as 4.325 s, has four digits after the decimal point so that the
predicted ATF problem can be modelled as a regression problem.
The plugin needs to work with the browser, i.e. it has to be
deployed on the client-side. In contrast, our system runs on the
server-side, which helps ISPs and webmaster provide better
service. Next, the collected data will be converted into the input
and output of the ML model through the data pre-processing
module.

Data pre-processing. Traffic characteristics at packet level are
remarkably diverse, which makes it difficult to extract statistically
meaningful features. On the other hand, the number and total size
of packets generated by one request may vary significantly from
page to page. A fixed dimension, however, is required for the input
of the ML model, which prevents us from directly using the
unprocessed data for training and prediction. To this end, a traffic
metric is proposed to represent the features of TCP flows, which
can reflect the network conditions and help to predict the web-
browsing QoE. The raw data will be processed into the proposed
traffic metric by statistical data processing methods [39]. Through
testing, we find that every form of traffic metric in time series may
correspond to different network conditions and ATFs. Therefore,
ATF can be predicted by distinguishing these different forms of
traffic metric. In this study, the traffic metric that we will be
investigating is CTV as detailed below.

CTV Accumulation is a commonly used method in statistical
analysis. It is impractical to measure traffic with packet-level
granularity, which is statistically meaningless. Statistical features
can be extracted by cumulative packet traffic. Fig. 2 shows the
normalised CTVs under excellent, not good, and terrible network
conditions, representing low, medium, and high ATF, respectively. 
Different network conditions are controlled by Dummynet. We
adjust the delay so that it corresponds to excellent, not good, and
terrible network conditions from small to large. As shown in the
figure, the curve exhibits a steep slope when the network is in
excellent condition. With the deterioration of network conditions,

the curve gradually flattens out. Different forms of CTV,
representing different ATFs, validate the practicality of ATF
prediction by distinguishing traffic metric forms.

3.3 Training and prediction

The input variables of ML models are obtained from CTV through
feature engineering methods [40], which will be elaborated in
Section 5. The output variable is ATF captured by the chrome
plugin mentioned above. A pair of an input value and its
corresponding output value is called an ordered pair, written as (a,
b). The pairs are used for training and testing. In the training
process, the predicted value is obtained by matrix operation, and
then the difference between the label and the predicted value is
reduced by iteration. The training modifies the weights of neural
networks, enabling the model to predict ATF well. In the prediction
process, only simple matrix operations are needed to obtain the
result, ATF. After that the ATF can be mapped to the user QoE by
mapping function or expert model [21].

4 Traffic classification sub-system
When surfing the web, users often visit plenty of pages, inevitably
generating a great number of requests and responses. Our model
can predict the web-browsing QoE for each website separately,
which requires classification of the mixed packets into different
clusters based on their source websites. This is the objective of our
traffic classification sub-system. The system can classify packets
belonging to the same website into the same cluster, which lays a
foundation for predicting the ATF of each website by ML
algorithms at a later stage. The traffic classification sub-system has
three parts: first, second, and third classification. The system can
aggregate 96% of the packets into the target flow.

Indirect access. When users visit a web page, a phenomenon
called indirect access usually occurs. That is to say, many websites
have pictures and other multimedia resources that need to be
retrieved from other servers. So, the user sends a request to the
server w, after which the server w sends a request to another server
s, and finally the server s sends a response. The domain name in
the first line of the HTTP header is the server address requested by
the packet, which is called the request address. However, we
cannot classify packets by request address alone due to the indirect
access phenomenon, which will lead to coarse-grained
classification results and failure to classify the packets belonging to
flow into a cluster. Our system has used multiple fields for iterative
classification to reduce errors caused by the indirect access. The
mainly used fields which contain the string associated with the
request uniform resource locator (URL) are as follows: request
address (the domain name in the first line of the HTTP header),
Referer, and Host.

GET URL. HTTP defines a set of request methods to indicate
the required operations for a given resource, such as ‘GET’,
‘HEAD’, and ‘CONNECT’. The packets with different request
methods usually have different fields, so multiple fields are needed
to ensure that all requested methods are covered. By analysis of the
relationship between the fields and the request method, we have
reached the following conclusions: (i) there must be a request
address and a Host in all packet headers. (ii) The Referer field
exists only in the header of a packet whose request method is not
‘CONNECT’, not in all the headers. Furthermore, by parsing the
contents of the packet header, we find that the source URL is the
most common in the Referer field, followed by the request address.
Specifically, the Referer field matches the source URL in the case
of indirect access. Based on the above assumptions, we propose an
algorithm to extract the target field from each packet header. It is
based on the Referer field, and the request address field is used as a
supplement.

Algorithm 1 (see Fig. 3) shows how to obtain the target URL
from the packet header. For each packet, we make U equal to the
request address using the request method of ‘CONNECT’ (line
1-3). Then, we look for the Referer field in the header of the packet
whose request method is not ‘CONNECT’. If the request method is
not ‘CONNECT’, we will set U equal to the Referer field; if not,

Fig. 2  Cumulative traffic volume (CTV)
 

Fig. 3  Algorithm 1: GET URL
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we will set U equal to the request address (line 4-8). After that, U
will be returned as the target URL.

First classification. Algorithm 2 (see Fig. 4) demonstrates how
to use the obtained target URL for the first classification. For each
packet, we will determine whether its target URL already exists in
the cluster sets. If it does, classify it as the cluster, and if it does
not, create a cluster and label it the target URL of this packet (line
2-10). The recursion stops when all the packets are classified, and
then the current function call will return the cluster_sets as its
return value (line 11).

Second classification. The second classification uses the results
of the first classification and the relevant fields of packet header.
Algorithm 3 (see Fig. 5) demonstrates how to obtain the second
classification results based on the first classification. First, we need
to sort the cluster sets according to the packet number in the cluster
from small to large (line 1). After that we get the number N of
clusters in the cluster sets (line 2). For each cluster[i], except the
largest cluster in the sets, we get the label (target) of each cluster[ j]
whose packets are more than that of cluster[i] (line 3-5). We loop
the cluster[ j] from a larger one to a smaller one to reduce the
number of merges (line 4). For each packet in cluster[i], we look
for target in the request address, Referer and Host fields (line 6-7)
in the packet header. If the target matches one of these fields,
merge cluster[i] with cluster[ j], and remove cluster[i] from the
cluster_sets (line 8-9). Then, go to line 3 to handle the next
cluster[i] (line 10). The recursion stops when i is equal to N − 1,
and then the current function call will return the cluster_sets as its
return value (line 15).

Third classification. Similar to the second classification, the
third classification uses the results of the second classification and

the relevant fields in the packet header. However, unlike the second
classification, the third classification needs to sort the cluster sets
according to the packet number in the cluster from large to small.
Note that third classification and second classification differ only
in the classifier and the input data, but the algorithm flow is the
same (line 2-15).

Preliminary results. We have captured > 2000 packets from six
popular websites to test the performance of the traffic classification
sub-system. The classification accuracy of first, second, third is
68.32, 81.59, and 96.63%, respectively. Through multiple iterations
of classification, the accuracy has been significantly improved.
96.63% classification accuracy also enables us to independently
predict the user experience of each website. Although there are
only 2000 packets of six websites, we have repeated the
experiment several times and have found that the classification
results are stable with no significant fluctuation in accuracy.
Detailed experimental results will be presented in Section 6.

5 QoE prediction sub-system
In this section, we will detail how ML methods can help identify
different forms of CTV, as introduced in Section 3.

Algorithm introduction. The key challenge is the accurate
distinction of traffic metrics. For this reason, we propose three ML
methods: ‘Slope’, ‘Cumulation’, and ‘R-Cumulation’. All the
models are based on our architecture, except that each of them
adopts different ML algorithms and feature engineering methods.
‘Slope’, based on the max slope and some features of CTV,
predicts the ATF with a lightweight neural network. ‘Cumulation’
relies on the linear interpolation data of the CTV and uses the
LSTM neural networks for ATF prediction. Having improved
‘Cumulation’ by reversing the input variables, we name it ‘R-
Cumulation’, which has fast training speed and good performance
in predicting ATF. All of them predict ATF based on the size and
arrival time of packets.

Training and prediction. First, we collect TCP packets arriving
within 60 s after the user visits a web page, and calculate the
normalised CTV, which is used as the input of the three models
later. After that, the input variables of ML models from CTV can
be obtained through some feature engineering methods [40].

Slope. The normalised CTV is obtained through the traffic
classification sub-system. The CTV curves have some features that
can be mapped to the ATF, one of which is the maximum slope. We
calculate the CTV slope at 1 s intervals and find the maximum
slope. It can be seen from Fig. 2 that the maximum slope of the
CTV curve is a good indication of ATF—the deeper the slope is,
the smaller the ATF is. In addition, we define the time when
normalised CTV reaches x% as tx%. We use t10%, t20%, t30%, t40%, t50%,
t60%, t70%, t80%, and t90% as classification features, as they form a nice
CTV envelope in time domain. The above features are combined
into a 10-dimensional feature vector as the input variable. The form
of the input variable is (t10%, t20%, t30%, t40%, t50%, t60%, t70%, t80%, t90%,
and maximum slope) as depicted in Fig. 6. We name the model
Slope because the maximum slope is included in its input variables.
The Slope model employs fully connected neural networks as the
predictor. The predictor derives the prediction result—the predicted
value. In the training process, the difference between the predicted
value and actual ATF is in continuous decrease through
backpropagation [41]. In the prediction process, the Slope model
can obtain the prediction results in real-time through forwarding
propagation.

Cumulation. A time series is a series of data points indexed (or
listed or graphed) in time order. Most commonly, a time series is a
sequence taken at successive equally spaced points in time. We use
linear interpolation to approximate 100 points of the CTV curve,
which are used as input variables of the cumulation model. Hence,
the input variable of cumulation is a typical time series. Therefore,
we use LSTM neural networks, a variant of recurrent neural
network (RNN), to deal with the problem of explosion and
vanishing gradients during traditional RNN training. LSTM neural
networks are well-suited to data classification, processing, and
predictions based on time series due to the possible lags of
unknown duration between important events in a time series.

Fig. 4  Algorithm 2: first classification
 

Fig. 5  Algorithm 3: second classification
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Through loop iteration, LSTM neural networks can retain all input
information of the sequence and the hidden information of non-
linear transformation from the starting moment to the current
moment. Therefore, LSTM is particularly suitable for addressing
the long delays of the linear interpolation vector. As shown in Fig.
6, the 100 approximate points are used as input variables of the
LSTM neural network, and the output of the LSTM is the predicted
value. We name the model Cumulation because it uses cumulative
data.

R-Cumulation. As shown in Fig. 2, the front of the CTV curve
is significantly different under different ATFs. Obviously, the
packets arriving earlier within 60 s represent the initial response of
the loading process, and thus may have a greater impact on ATF.
The interpolated data is sequentially inputted to LSTM neural
networks, and the output is generated when the last data enters,
ensuring the less impact of early data on the output, which is a
feature of LSTM neural networks. For this purpose, we reverse the
interpolated data so that the post-end data enters first, i.e. the early
packets of the CTVs are processed in the end. Therefore, the early
part of interpolated data will have a profound impact on the output
of the Cumulation model for better prediction. This model is
named R-Cumulation because it takes the reversed interpolated
data as the input variable. Note that Cumulation and R-Cumulation
differ only in the input variable—the architectures are the same.
We will demonstrate in Section 6 that R-Cumulation does have
better performance than Cumulation.

Summary. All models based on our architecture are data-driven,
guaranteeing that they can be updated on a regular basis with new
data. QoE prediction of the different websites is quite simple
because only the data of corresponding websites is needed. All the
methods can predict user experience in real-time through ATF,
allowing ISPs, and equipment vendors to detect poor user
experience and take actions if necessary.

6 Implementation and evaluation
6.1 Experiment setup

Our measurements took place from June 2019 to August 2019 in a
laboratory in China. The hardware was equipped with i5-8600K
CPU and GTX 1070Ti graphics card. All models were trained with
GPU-version of TensorFlow. We tested the performance of the
traffic classification sub-system and QoE prediction sub-system
separately. The respective experimental settings are as follows.

Settings for traffic classification. When a user visits multiple
web pages, the packets may arrive together. The traffic
classification sub-system can distinguish the packets of different
websites, providing the basis for establishing a QoE prediction
model for each website. We simultaneously simulated visits to six
popular websites for testing: (taobao.com), (sina.com.cn),
(bilibili.com), (amazon.com), (qq.com) and (jd.com). In what
follows, we use ‘taobao’, ‘sina’, ‘bilibili’, ‘amazon’, ‘qq’ and ‘jd’
to refer to these websites for simplicity.

Settings for QoE prediction. To train the neural network model,
extensive labelled data were needed. We simulated lots of visits to
‘tmall.com’ and ‘weibo.com.cn’, which ranked the fifth and 16th,
respectively, in Alexa Traffic Rank [42]. In what follows, for
simplicity, we use ‘tmall’ and ‘weibo’ to refer to the sites. We
collected the TCP packets arriving within 60 s after visits, and got
the ATF time by a chrome plugin. We used Dummynet, which
could control the network condition (such as packet loss, delay, and
downstream throughput), to construct samples with different ATF
time. Then, we got the normalised CTV from these packets and
labelled the sample according to the captured ATF time.

Dataset. We simulated 13,000, 18,000 visits to tmall and weibo,
respectively. 70% of the data was used as the training dataset and
the rest as the test dataset. For a certain website, different models
shared the same training dataset and test dataset, ensuring that the
results were not affected by the way of dataset segmentation. Using
the training dataset, each model was trained separately.

Model parameters. A ‘structured trial and error’ method is
commonly used for creating a neural network's layer
approximation [43]. The architecture of models was determined by
this method, so the best performance on the test dataset could be
achieved by tuning these parameters. The three models have some
common parameters: number of iterations = 5000,
learning rate = 0.003, and batchsize = 128. Other parameters are
shown in Table 1. The number of input units is the dimension of
the input variable, and the number of hidden units is the number of
neurons in the hidden layer. The number of hidden layers is the
number of network layers between input layers and output layers.
They exemplify the scale of the model. It indicates that all models
are lightweight networks.

6.2 Evaluation

6.2.1 Traffic classification: Number of packets per cluster. The
traffic classification sub-system needed to distinguish packets from
different websites. We captured 2,080 packets from six websites
and classified them by the first, second, third classification. As
shown in Fig. 7, the number of unclassified packets (others)
dropped from > 600 to 70. Also, the packet number of each
website steadily increased by the first, second, and third
classification. After the third classification, the unclassifiable
packets accounted for only 3.3% of the total, which was negligible.
Furthermore, all packets of different websites were correctly
classified into their own clusters without classification errors.

Classification result. As depicted in Fig. 8, the classification
accuracy is gradually increasing. The number of correctly
classified packets after the first, second, and third classification is

Fig. 6  Architecture of the slope model and the cumulation model
 

Table 1 Other model parameters
Number of input

units
Number of

hidden units
Number of

hidden layers
slope 10 (9,8) 2
cumulation 100 256 1

 

Fig. 7  Packets number versus iterations
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1,412, 1,697, and 2,010, respectively. Also, the classification
accuracy is 67.88, 81.59, and 96.63%, respectively. It can be seen
that the results of the first classification and the second
classification are not satisfactory. The third classification is
essential. The second classification and the third classification
increase the accuracy by 13.27% and 15.05%, respectively. The
results of our classification are classified packets, and they are
divided into different clusters. Through iterative classification, the
number of clusters is reduced and the number of packets contained
by several large clusters is increased. As shown in Fig. 8, the
number of clusters after the first, second, and third classification
decreases as iterations. It shows that the second classification and
the third classification succeed in merging clusters of the same
website. Although 3.3% of the data packets are not classified into
six clusters, they will not affect the subsequent prediction of web-
browsing QoE due to their limited impact on CTV.

6.2.2 QoE prediction: Evaluation metrics. In statistical analysis
of regression problem, mean square error (MSE), R2 score, adjusted
R2 score and explained variance are the commonly used metrics for
performance evaluation. In the formula below, y is the actual value,
f is the predicted value, and n is the number of samples.

In statistics, the MSE of the estimator measures the mean
square of the error, i.e. the mean square deviation between the
estimated value and the actual value. The MSE is a measure of
estimator quality. It is always non-negative and the closer it gets to
zero, the better.

MSE = 1
n ∑

i = 1

n
yi − f i

2

R-squared (R2 score) is a statistical measure, representing the
proportion of the variance for a dependent variable explained by an
independent variable or variables in a regression model.
Correlation explains the strength of the relationship between an
independent and dependent variable, while R-squared explains to
what extent the variance of one variable explains the variance of
the second variable. The closer R2 is to 1, the more accurate the
prediction of the model is.

R2 = 1 −
∑i = 1

n yi − f i
2

∑i = 1
n yi − y 2

The adjusted R2 score is a modified version of R2 score that has
been adjusted according to the number of predictors in the model.
The adjusted R2 score increases only if the new term improves the
model more than expected. It decreases when a predictor improves
the model less than expected. It should be specially stated that p
refers to the dimension of the input variable.

Adjusted R2 = 1 − 1 − R2 (n − 1)
n − p − 1

Explained variance is used to measure the discrepancy between
a model and actual data [44]. The best possible score is 1.0.

Explained variance = 1 − Var(y − f )
Var(y)

Data distribution. We got lots of labelled data with different
ATFs by Dummynet. The performance of the supervised learning
model is sightly affected by the distribution of data. For example, a
similar amount of data for each category is generally required in
classification problems. Our problem is regression, which usually
requires a reasonable distribution of data [45]. Fig. 9 shows the
ATF distribution of weibo. It can be seen that most ATFs are
between 0 and 13 s. By controlling the network condition, we got a
great amount of data in 0–2 s, an extremely common interval.
When the network condition fluctuates, ATF is large, which usually
indicates poor user experience. As shown in the figure, the ATFs
basically cover the situations encountered by users in normal use,
to meet the needs of the subsequent regression model.

Cumulation versus R-Cumulation. We will now demonstrate
that the improved Cumulation model, R-Cumulation, has better
performance. Fig. 10 shows the prediction MSE by Cumulation
and R-Cumulation against the number of training epochs for
weibo. It suggests that the model converges much faster when R-
Cumulation is at about epoch 150. With Cumulation, the model
converges at about epoch 350. In addition, the MSE of the R-
Cumulation model is also lower than that of the Cumulation model.
The minimum MSE of the Cumulation and R-Cumulation models
is 1.0554 and 0.6587, respectively. Based on the results, we believe
that the training accuracy and convergence speed of the
Cumulation model can be significantly improved by reversing
input variables.

Performance. Table 2 shows the performance of models on the
R2 score, explained variance, and adjusted R2 score. The data
volume of weibo and tmall test dataset is about 5400, 3900 samples
(30% of the dataset), respectively. The results show that for weibo,
the three models work remarkably well on ATF prediction. We can
conclude that the performance of predicting ATF for weibo is, R-
Cumulation > Cumulation > Slope, despite their close metrics. The
metrics are close to 1, suggesting the performance of predicting
ATF is close to optimal. For tmall, the performance is less
impressive and there are great differences among the three models.
Among the three models, R-Cumulation appears to be the best
performer on tmall. The metrics are close to 0.84. The Slope
model's metrics are all below 0.4, indicating its poor prediction
performance. Cumulation is slightly better than Slope, but it is also

Fig. 8  Traffic classification results
 

Fig. 9  ATF distribution of weibo
 

Fig. 10  Cumulation versus R-Cumulation
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a poor predictor of ATF, the metrics of which are around 0.55.
Since tmall is a shopping site, there are a lot of dynamically loaded
contents on its home page. Therefore, the diversity of content (or
the dataset) on its home page is a challenge to classification
regardless of network conditions, which may decrease the ATF
prediction accuracy. As shown in Table 2, the metrics of the R-
Cumulation model are much higher than those of the Cumulation
model. The performance of the Cumulation model is improved by
reversing input variables. Therefore, R-Cumulation will be used
instead of Cumulation in later experiments.

Training and test time. Table 3 shows the training and test time
of the three models on weibo. The data volume of the training and
test datasets is about 12,600 and 5400 samples, respectively. It
shows that the training time of R-Cumulation is much longer than
that of the Slope. R-Cumulation uses LSTM neural networks as the
predictor. Also, the training time of LSTM neural networks
depends on the number of iterations, i.e. 100. Consequently, per
training batch of Cumulation requires 100 backpropagation,
resulting in excessive training time. In contrast, Slope uses fully
connected neural networks as the predictor, which requires only
one backpropagation per training batch. As a result, the training
time of R-Cumulation is much longer than that of Slope. So is the
test time. The time it takes R-Cumulation to complete 5400
predictions is much longer than it takes Slope. To generate output,
R-Cumulation requires 100 forward propagation, while Slope only
requires once. Furthermore, the time of predicting 5400 flows by
the two models is only about 0.0975 s and 8.859 s, respectively. It
suggests that QoE of a flow can be predicted in only 0.00018 s,
thus enabling the real-time web-browsing QoE prediction of the
model. Additionally, there are lots of mice flows and fewer
elephant flows in the network. Mice flows can be filtered out by
traffic classification algorithms or other methods [26, 46], and then
only elephant flows will be dealt with. Moreover, the better the
machine, the faster the prediction.

Summary. We have proposed three models based on our
architecture for ATF prediction. Based on the above results, we
have come to the conclusion that the R-Cumulation model has the
best performance, but the longest training and prediction time.
Regardless of websites, the R-Cumulation model is a good
predictor of the web-loading ATF time. Cumulation has a
reasonable performance with the longest training and prediction
time. This indicates that reversing the input variable is indeed very
effective. The Slope model has short training and prediction time,
but the worst performance. In addition, it took us three months to
collect data, which included a variety of web contents.
Nonetheless, R-Cumulation is still a good predictor of ATF,
demonstrating that our model can be updated by re-training with
new data. This effect cannot be achieved by setting thresholds or
deducing mathematical formulas. Furthermore, the well-trained
model takes up extremely little storage space. Specifically, Slope
requires 18 kB of storage space, while R-Cumulation and
Cumulation require 1065 kB due to more parameters.

7 Conclusion
In this study, to predict web-browsing QoE, we present our
architecture, which relies on packet-level measurements without

deeply parsing the packet payload and can be deployed on the
network intermediate devices. After classifying packets belonging
to different websites and modelling each website separately, our
architecture can evaluate user perceived experience by predicting
the exact ATF value of page loading through a regression model.
Furthermore, we demonstrate the potential and feasibility of
predicting user experience of surfing the website through ML
methods.

The proposed web-browsing QoE architecture does not take
into account that users may have different tolerance for web page
loading speed. This is a limitation of the current solution as the
level of tolerance has an impact on the web-browsing experience.
A possible extension to the approach is to predict the user
experience directly. The user's real experience can be obtained
through crowdsourcing tests, and then the direct prediction of user
experience can be made through the model.
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