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Abstract. Users’ perception of their experience accessing web pages
greatly affects users’ willingness to continue browsing the website. How-
ever, it is difficult to assess user perception through a generic Quality
of Experience (QoE) model. Web content consists of a large variety of
static as well as dynamic objects, with some of them coming from the
remote sites. This makes QoE assessment a challenge for the traditional
methods. To build a generic QoE model, we introduce WebQMon.ai,
a lightweight Web QoE assessment architecture using machine learning
methods without setting any specific formula or threshold. WebQMon.ai
can evaluate web-browsing QoE using mostly network-layer data with
only one piece of application-layer information, the referer in the HTTP
header, which is used to aggregate the packets associated with the same
web page. The distribution of the arriving packets requested by the web
page is used to construct WebQMon.ai. WebQMon.ai requires little stor-
age space (80KB~6MB). More importantly it can be deployed directly at
edge routers/gateways, due to the weak dependence on the application-
layer payload. We further improved our algorithm by ensemble learning
combining multiple orthogonal features, to generate a stronger classi-
fier. We evaluated WebQMon.ai on three popular websites. It shows that
the QoE assessment results for 4,800 unknown samples can be obtained
within just 0.07s and reach an average accuracy of 97%.

Keywords: Web-browsing QoE · Neural networks.

1 Introduction
The web-based Internet activities produce a large amount of HTTP traffic [15].
Internet users often visit a variety of websites to search for information, watch
video clips or socialise with someone. The page loading latency is critical to
user experience (UE). A study shows that there is a strong correlation between
the performance of e-commerce websites and online shoppers’ behavior [1]. The
observation from the experiment with 1,048 online shoppers indicates that two
seconds is the critical threshold for page loading latency, after which consumers
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may become impatient if the page is still not loaded, and 40% of the consumers
will abandon the site if it goes beyond three seconds. Research also shows that
slow page loading damages consumers’ loyalty to an e-commerce site, especially
for high spenders [3]. Up to 79% of online shoppers who experienced a dissat-
isfying visit would never visit the site again while 27% of them would not visit
its physical store either. QoS has been widely used to measure network perfor-
mance. But, it is not a direct reflection of QoE [5]. ISPs and equipment vendors
can however leverage their knowledge of the traffic going through their networks
and create hypothetical QoE prediction models to estimate UE or QoE anywhere
in the network. They can then refine the network settings or give feedback and
recommendations to website owners to improve QoE.

However, real-time QoE assessment is a challenge. Casas et al. [4] propose
YOUQMON, which can predict in real-time the stalling events of YouTube
videos with network-layer data. Unfortunately, it is not a generic QoE assess-
ment tool, as the thresholds and formulas are made specific to YouTube. The
web-browsing QoE is mostly affected by the loading time of the last visible ob-
ject shown on the screen, that is, above-the-fold (ATF) time. The study in [7]
shows that among a variety of QoE metrics including page load time (PLT), ATF
is most correlated to user experience. Many studies use ATF or its variants to
capture how users perceive web-browsing experience [7, 9, 11, 12, 14]. Although
predicting QoE by ATF works well, it is not a trivial task to obtain ATF. Most
of the existing methods obtain ATF or its variants with client-side support by
analyzing the video recordings of the web page rendering process [9, 11, 17] or
tracing loading time of different resource types [6, 7, 12, 14, 16]. However, these
analysis methods have a common issue: relying on client-side support to install
software or hardware plugins and thus obtain or infer ATF or its variants. In
contrast, we use machine learning methods to predict ATF.

To this end, we design WebQMon.ai, a generic real-time tool for assessing
web-browsing QoE without requiring client-side support. It uses network-layer
data and a single piece of application-layer data (the referer field in HTTP
header) to predict ATF. As the referer is in the first few bytes of the HTTP
request packet, no packet reassembly is needed. The referer is not even required,
if the content from the third-party web site is not a concern. Hence, WebQMon.ai
can be deployed at access routers or gateways without additional security or
privacy concerns, which may be an issue for those requiring client-side support.

As ATF increases QoE deteriorates. We can classify ATF into multiple cate-
gories. Each category corresponds to a certain level of QoE, e.g., an ATF below
two seconds indicating good user experience [1]. We gather TCP traffic gener-
ated from web browsing, and then characterize the traffic by the two proposed
traffic metrics: Traffic Volume per Second (TVS) and Cumulative Traffic Volume
(CTV). TVS and CTV in time series exhibit different patterns under different
network conditions, which is a good indication of distinct QoE. WebQMon.ai
can predict QoE by distinguishing these patterns. Based on this architecture,
we propose five supervised learning-based models to classify the patterns. The
collected samples of the traffic metrics in time series are labeled by the esti-
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mated ATF. The labeled data is then used as training data to train the machine
learning model. The trained model takes up a small amount of storage space,
from tens of KBs to a few MBs. WebQMon.ai is capable of real-time and accu-
rate prediction. For instance, more than four thousand samples can be predicted
within 0.07 seconds, with an average accuracy of 97%.

Our major contributions are summarized as follows:

– We propose WebQMon.ai, a generic web-browsing QoE assessment system,
capable of real-time prediction with high accuracy. It can be deployed on
gateways instead of end hosts, with little storage space required. WebQ-
Mon.ai is powered by a data-driven model. It can be easily updated with
new data to adapt to new types of web content in a timely manner, without
the complexity of mathematical formulations or threshold settings (§ 3).

– To realize the data-driven model, we develop five models based on machine
learning algorithms and the WebQMon.ai architecture to predict ATF. These
methods are lightweight, easy to train and enable real-time and accurate
prediction without being limited to a certain type of content (§ 4).

– We implement the five models with 1,876 lines of code, available at our github
repository [2] (§ 5). The extensive evaluation shows that WebQMon.ai works
very well on QoE prediction (§ 6).

2 Related Work
The current work requires client-side support for web QoE assessment. Some of
the approaches rely on models specifically designed for a particular web site such
as YouTube. WebQMon.ai is a generic architecture that can be easily applied to
different types of web content. The other adopt generic models using formulas or
machine learning models. These solutions acquire ATF and/or its variants with
client-side support, and then perform QoE mapping through formulas or machine
learning models. These solution are conceptually different to WebQMon.ai, which
aims to estimate ATF without client-side support.

Non-generic models. The solutions in [4, 10] predict QoE through mathe-
matical formulations and empirical threshold settings. This is a complex proce-
dure, and more importantly, limits its applicability to other types of web content.
For example in [4], YouTube stalling events are predicted using two thresholds
αsta and αplay, which are estimated from large measurement campaigns. This
is a complex procedure, and more importantly, limits its applicability to other
types of web content [4]. For a different application, it may require to re-estimate
the threshold from another large measurement campaign. WebQMon.ai is data-
driven, which does not require threshold settings or mathematical formulations.

Formula-based QoE mapping. Given the user-perceived metrics, the so-
lutions in [11, 14] uses formulas for QoE mapping. For example, the work in
[11] analyzes the video frames of the recorded web page rendering process and
then obtains ATF related metrics such as SpeedIndex. The work in [14] has a
customized application embedded into the user devices to get the relevant in-
formation for QoE mapping. These systems rely on client-side plugins to obtain
relevant metrics to do QoE mapping and have to be deployed on the client-side.
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Fig. 1. WebQMon.ai architecture.

Machine learning-based QoE mapping. Some solutions use machine
learning models for fine-grained QoE mapping, after acquiring ATF or relevant
metrics from the client-side [7, 9, 12, 13]. The studies in [7, 12, 13] get the
metrics through the browser’s API. Similar to [11], the work in [9] obtains ATF
through analyzing the recorded web page rendering process. These solutions are
conceptually different to our approach, as WebQMon.ai uses machine learning
models to estimate ATF based on traffic characteristics. However, we did get
inspired by these studies and adopted the machine learning-based approach.

3 WebQMon.ai Architecture

3.1 System Architecture

ATF determines user’s web-browsing experience. We propose WebQMon.ai to
predict ATF and thus user experience. We collect network-level data from the
Gateway and transform raw data into a useful format (Fig. 1). Then, our model
is trained with the processed data. After that, WebQMon.ai can predict ATF
when the user visits the web pages. In § 4, based on the architecture, we propose
five models using different input metrics and machine learning algorithms. These
models can be trained and/or updated with the diverse types of content or web
sites, giving it the ability to learn and adapt to the new context.

The access routers or gateways all perform DPI (Deep Packet Inspection) for
a variety of reasons. Raw data is readily available without needing additional
resources. No packet reassembly is even needed as packets are processed as they
need to be. We only need to get the statistics and construct the proposed traffic
metrics. As to be discussed in § 3.2, the overhead can be managed by following
vendor’s restrictions on sampling intervals. The test time of the models is instant
as shown in § 6, predicting over 4,000 samples within 0.07 seconds. The storage
requirement is in the order of tens of KBs to a few MBs. All these indicate that
WebQMon.ai can be conveniently deployed at gateways.
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Fig. 2. Traffic Volume per Second.
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Fig. 3. Cumulative Traffic Volume.

3.2 Dataset and Data Preprocessing

The training and test dataset are derived from the TCP streams appearing when
the user visits a web page. In Fig. 1, we can easily get all TCP traffic at the
Edge Router or Gateway. The referer, a field in HTTP header, is used to identify
and aggregate the traffic requested by the visited web page from other sources
such as a third-party website. The arrival pattern of TCP packets is highly
correlated to network conditions. The arriving packets are from different TCP
flows. We will first need to aggregate the packets into their individual flows to
establish the correlation. To extract meaningful flow features that can reflect
network dynamics, we propose two traffic metrics to be defined below.

Traffic Volume per Second (TVS ) measures the instantaneous throughput
of a flow. The challenge is the sampling granularity. A fine granularity may
cause a high-level of measurement overhead, which the gateway may struggle
to handle. A coarse granularity may result in the loss of detailed flow features,
which will decrease classification accuracy. The sampling interval is set to one
second, the finest sampling granularity limited by the switch without overloading
the gateway. Fig. 2 shows the normalized TVS in time series with good and bad
network conditions, respectively. Good network conditions result in satisfactory
ATF while bad network conditions result in unsatisfactory ATF, as defined in
Eq.(1). We will elaborate on this in § 5. It shows that when the network condition
is good, a large amount of content arrives quickly and the peak rate appears at
the early stage of the transmission. In contrast, when the network condition is
bad, the content is loaded slowly and there is no clear peak rate.

Cumulative Traffic Volume (CTV ) measures the total amount of traffic re-
ceived over a flow at a time point. Fig. 3 illustrates the normalized CTV in
time series for different network conditions, corresponding to satisfactory and
unsatisfactory ATF, respectively. With the good network condition, the curve
shows a steep slope, or otherwise a shallow slope.

Both TVS and CTV in time series exhibit a pattern clearly correlated to
network conditions. This is a strong indication that these two traffic metrics may
be used to reflect web-browsing QoE.

3.3 Training and Prediction

The raw TCP data is processed to generate the proposed traffic metrics. Each
of them is marked with a unique label for supervised learning and the ATF can
be predicted by exploring the time series patterns of the metrics. When using
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Fig. 4. Architecture of the Slice model.

machine learning methods, TVS and CTV need to be processed to generate in-
put variables. We will elaborate on this in a later section. In the training stage,
the difference between the predicted value and the label is reduced iteration by
iteration. In order to get the prediction results (i.e., ATF), we conduct sim-
ple matrix calculations. The ATF can then be mapped to the QoE score by a
mapping function [7]. This enables real-time QoE assessment.

4 WebQMon.ai Algorithm

To explore TVS and CTV for QoE assessment, we design five classification
models based on machine learning methods, namely, Slice, NN, LSTM, R-LSTM
and Combine. All the models use the WebQMon.ai architecture, with selected
machine learning algorithms and feature variables, to be discussed in § 4.3 . Slice
classifies TVS using the fully connected neural networks. NN is based on the
maximum slope and time domain features of CTV. LSTM relies on the linear
interpolation data of CTV. R-LSTM improves LSTM by reversing the input
variables. The fifth method, Combine, uses the idea of ensemble learning, which
can subtly combine the predictions from multiple learning models to achieve
more accurate, stable, and robust results. It is particularly suitable in our case
as the features of Slice, NN and R-LSTM are distinct to each other.

4.1 Basic Classification Models
The packets that arrive within 60 seconds after the HTTP request are collected
and preprocessed. We calculate and normalize TVS and CTV, which are then
used as the input of the first four models. The output is the label of ATF or
QoE score, which is determined by the probability of the estimated ATF, for
example, being below or above 2 seconds.

Slice takes TVS as input. The different forms of TVS correspond to different
ATF. Slice uses fully connected neural networks for fast training and testing and
good performance. Since packets are collected for 60 seconds, the data format
of TVS is a 60-dimensional vector as shown in Fig. 4. The input variable is the
normalized data.

NN takes CTV as input and uses fully connected neural networks. Fig. 3
shows that the maximum slope of CTV can reflect the network condition — the
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Fig. 5. Architecture of the NN model and the LSTM model.

deeper the slope is, the better the condition is. This makes maximum slope one
of the classification features. The time when CTV reaches x% is denoted as tx%.
It makes sense to use t25%, t50%, t75% and t90% as inputs, to capture CTV in
time domain while making them relatively independent. Together with maximum
slope, we have a five-dimensional input, that is, t25%, t50%, t75%, t90%, maximum
slope. Note that the time domain inputs tx% do have some correlation. This
violates the assumption to use NN and explains its less impressive performance
on ternary classification in § 6. LSTM is more suitable to use CTV.

LSTM (Long Short-Term Memory Neural Networks), a variant of Recurrent
Neural Networks (RNN), is often used to process the time series data. Compared
to the simple RNN, LSTM can keep the Long-Term Memory feature of the
sequence. Therefore, LSTM is particularly suitable to address the long delays
of CTV and capture the dependency between data points. As shown in Fig. 5,
to construct the input, linear interpolation is used to create approximate 100
points of CTV for curve fitting.

R-LSTM. The packets that arrive earlier within the 60 seconds represent
the initial response of the loading process, and thus may have a greater impact
on user experience. However, in LSTM the early input has less impact on the
output. This is not desirable. Therefore, we reverse the interpolated data, that
is, the early data points of CTV are processed last, giving them more influence
on the output. We call this model R-LSTM. Note that LSTM and R-LSTM
differ only in the input vector. We shall demonstrate in § 6 that R-LSTM indeed
performs better than LSTM.

4.2 Combine Classification Model

Combine leverages ensemble learning. The idea is to first generate multiple
learners, then combine them with some integration strategies, and finally gener-
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Fig. 6. Architecture of the Combine model.

ate the output. The theoretical basis of ensemble learning is that strong learners
and weak learners are equivalent, so we can find ways to convert weak learners
into strong learners instead of having to directly search for strong learners that
are hard to find. Take the binary classification problem as an example. Assume
that there are N independent classifiers with an error rate of p. Using a sim-
ple voting method to combine all the classifiers, the error rate of the integrated
classifier is Perror =

∑N/2
k=0 C

k
N (1 − p)kpN−k. It can be seen from the equation

that when p < 0.5, the error rate Perror decreases as N increases. If the error
rate of each classifier is less than 0.5 and they are independent of each other,
the more the number of classifiers is, the smaller the Perror will be. When N is
infinite, the Perror is 0. In addition, the ensemble model works well when these
weak classifiers perform well individually and have different features.

Since R-LSTM performs better than LSTM, we decide to combine R-LSTM,
Slice, and NN through ensemble learning. As the features of these three classifiers
are distinct to each other, the ensemble model may work well. After completing
the training of the three basic models, we combine them using fully connected
neural networks. As shown in Fig. 6, based on binary classification, the predicted
values of the three models are combined into a six-dimensional vector as the input
variable of the fully connected neural networks.

4.3 Feature and Algorithm Selection

For the fully connected neural networks, we assume that all inputs are relatively
independent of each other. In contrast, the idea behind LSTM neural networks
is to make use of sequential correlated information. The models are designed to
take advantage of the different input variables. For example, TVS is used for
Slice while CTV is used for NN. The input variables for LSTM and R-LSTM are
derived from CTV, with the earlier input related to the latter input. The other
three models does not have this property and thus can take a simple approach
using the fully connected neural networks. Combine aims to take advantage of
the other models for better performance.

All these models are data-driven methods, which means that we can update
our models with new data in a timely manner on a regular basis. The real-
time ability of these methods allows ISPs and equipment vendors to assess user
experience on the fly and take actions if necessary.
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5 Implementation and Experimental Settings

5.1 Dataset collection

Data Collection. Our experiments took place from September 2020 to February
2021 in a laboratory. The hardware was equipped with i5-8600K CPU and GTX
1070Ti. We selected three websites to visit, that is, “amazon.com”, “sina.com.cn”,
ranked the eighth and the nineteenth, respectively, in Alexa Traffic Rank, and
“youku.com.cn,” which represent widely used shopping, news and video sites.
For simplicity, we will use Amazon, Sina and Youku to refer to these websites.
Our data was obtained by visiting the homepage of the website. Note that the
homepage is the most popular, diverse and dynamic page and its content changes
over the months of the sampling period. Being able to classify the homepage of
the three different types of websites is a challenge. We collected the packets
arriving within 60 seconds after the user visited the website. Then, we got the
TVS and the CTV from these packets and labeled this sample of TVS or CTV
in time series according to the estimated ATF. We used Dummynet to create a
bottleneck to control the network condition and construct samples with different
labels accordingly. There were already mature plugins for the aggregation of
packets belonging to the same visit. Traffic aggregation was implemented by the
Firefox browser.

Data Labeling. We evaluate the performance of Slice, NN, LSTM, R-LSTM
and Combine to predict ATF using the collected dataset. Our experiments have
two parts: binary classification and ternary classification. We adjust the network
condition through Dummynet to ensure that the ATF meets our requirements,
measured by the chrome plugins released in [6]. We then label the data according
to the estimated ATF using the following rules based on Akamai’s research on
customer behaviours, 2 seconds being the psychological threshold [1]:

Binary : label =

 0, ATF ≤ 2s

1, ATF > 2s
; Ternary : label =


0, ATF ≤ 2s

1, 2s < ATF ≤ 5s

2, ATF > 5s

(1)

We use a simple one-to-one correspondence to map ATF to QoE, which could
be implemented through a mapping function [7]. For binary classification, “0”
represents good UE, and “1” represents poor UE. For ternary classification, “0”
means good UE, “1” means poor UE, and “2” means terrible UE.

Dataset. For binary classification, we collected about 16,000, 16,000, 8,000
samples from Sina, Amazon and Youku, respectively, of which the proportion
of positive and negative samples was 1:1. This balanced split is for the purpose
of learning, to ensure that the models learn both positive and negative cases.
In reality the occurrence of positive cases is much less common than that of
negative cases. However, only positive cases are of interest to ISPs and vendors.
For ternary classification, we only got extra 6,000 samples from Sina due to being
blocked later on. The proportion of “0”, “1” and “2” samples was 4:4:3. 70% of
the samples are used as the training dataset with the rest as the test dataset.
Since most websites have a mechanism against crawling, this prevents us from
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Table 1. Other Model Parameters.
No. of

input units
No. of

hidden units
No. of

hidden layers

Slice 60 480 2
NN 5 40 2

R-/LSTM 100 256 1
Combine 6 48 2

Table 2. Dropout effect.
No

Dropout
Pkeep

of 80%
Accuracy 0.9425 0.9495
Precision 0.9569 0.97
Recall 0.9512 0.9489

F1 score 0.954 0.9593

frequently refreshing the same web page. For example, when we collected data
from Amazon, it always required to provide a verification code. This made it
extremely difficult to create a larger dataset. We believe that the amount of
available data can demonstrate the feasibility of the model to a certain extent,
and the three websites represent the typical scenarios of web browsing activities.
For a certain website, different models share the same training and test dataset,
ensuring that the results are not affected by how the dataset is split. We use the
training dataset to train each model separately, that is, we train five models for
each of the test websites, for a total of 15 models.

5.2 Model Parameters
Parameter Setting. The parameters common to all models are: number of it-
erations=100,000, learning rate=0.003, and batch size=128. These parameters
were chosen to achieve the highest accuracy on the validation set. Other param-
eters are shown in the Table 1. The Number of input units is the dimension of
the input variable, while the Number of hidden units is the number of neurons
in the hidden layer. The Number of hidden layers is the number of the network
layers between input and output layers. The classic “trial-and-error” method was
used for creating neural network layers. It was a simple process with several iter-
ations. There was no need to readjust the parameters and it worked well across
all the three web sites, indicating the ease of parameter selection. It also shows
that all the five models have a simple lightweight architecture.

Overfitting and Dropout. In machine learning, overfitting may occur
when a model corresponds too closely or exactly to the training data and thus
may fail to fit the test data or predict reliably. Dropout regularization is one of
the popular techniques to avoid overfitting, which helps make the model globally
fit. As shown in § 6, the Slice model is overfitting. Dropout is applied by deacti-
vating a portion of neurons at the training time. Pkeep represents the portion of
active neurons. After tests on the validation set, we found that the Slice model
had the best performance with Pkeep set to 80%.

6 Experimental Results

Accuracy, precision, recall and F1 score are commonly used performance metrics.
In a real-world scenario, the chance to have an unsatisfactory ATF (positive) is
small. Accuracy can be misleading for imbalanced data sets, e.g., small portion
of positives vs large portion of negatives. Precision represents true positives
per predicted positive while recall represents true positives per real positive. As
recall increases, precision may drop, and vice versa. F1 score is the harmonic
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(a) Loss without dropout.
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(b) Loss with Pkeep of 80%.
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(c) Accuracy without dropout.
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(d) Accuracy with Pkeep of 80%.
Fig. 7. Without dropout regularization vs. Pkeep of 80%.

mean of precision and recall. A high F1 score indicates a good balance between
the two. As we have a focus on positive cases and the number of negatives is
unknown and large, this makes the latter three metrics particularly suitable in
our evaluation. Eq.(1) shows the label of our data. For binary classification, label
with “1” is the positive instance and label with “0” is the negative instance. For
ternary classification, each category is treated as a positive class for calculating
the values of the metrics. The test dataset is used to predict labels. The predicted
label is compared to the actual label, which serves as the ground truth.

6.1 Basic Models

Dropout Effect on Slice. Fig. 7 compares the results with and without dropout
regularization (Pkeep set to 80%). It shows that the Slice model is indeed over-
fitting. Fig. 7(a) and 7(b) shows the loss functions measuring the inconsistency
between the predicted value and the actual label against the number of training
epochs. The loss functions decrease as the number of epochs increases. Without
dropout (Fig. 7(a)), the loss function of the test dataset is not as small as that
of the training dataset, and this gap does not decrease as the number of epochs
increases. This is an indication of overfitting. With dropout (Fig. 7(b)), the loss
function of the training and test datasets matches each other very well. Simi-
larly, Fig. 7(c) and 7(d) shows the accuracy performance of the model against
the number of epochs. The accuracy improves as the number of epochs increases.
Without dropout (Fig. 7(c)), the accuracy of the test dataset does not match
the accuracy of the training dataset, which reaches 100%, and the gap is not
narrowed as the number of epochs increases. The model fits the training dataset
well but fails to fit the test dataset. This indicates that the Slice model is indeed
overfitting. With dropout (Fig. 7(d)), the accuracy of the training and the test
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Fig. 8. Accuracy comparison (LSTM
vs R-LSTM).
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Fig. 9. Training and test time compar-
ison (Amazon).

datasets matches each other closely. Although dropout reduces the accuracy of
the training dataset, it helps improve the accuracy of the test dataset.

Table 2 shows that, with dropout regularization, the accuracy, precision and
F1 score of the model slightly increase but the recall decreases a little bit. Note
that precision and recall are mutually influential (true positives per predicted
positive vs per real positive). True positives are usually achieved at the cost of
false positives. A high recall may come with a low precision, and vice versa [8].
Ideally, we want to keep both precision and recall high, to ensure that the posi-
tives are true positives without any missing positives. A high F1 score (as shown
in Table 2) indicates a good balance between the two. Based on these results,
we can conclude that dropout regularization improves the performance of Slice.
Dropout is applied to Slice in the later experiments.

LSTM vs R-LSTM. We will now demonstrate that the improved LSTM
model, R-LSTM, has better performance. Fig. 8 shows the prediction accuracy
by LSTM and R-LSTM against the number of training epochs for the three
test websites. It shows that the model converges much faster with R-LSTM at
roughly epoch 50 for both Sina and Amazon. With LSTM, the model converges
at roughly epochs 150 and 600, for Sina and Amazon, respectively. For Youku,
R-LSTM has much higher accuracy than LSTM, roughly 97% vs. 75%. Based
on these results, we believe that reversing the input variables can significantly
improve convergence time as well as accuracy, depending on the type of web
content. In later experiments, we will use R-LSTM instead of LSTM.

Performance. Table 3 shows the performance of the models for binary clas-
sification on accuracy, precision, recall, and F1 score. The data volumes of the
test datasets for Amazon, Sina, and Youku are approximately 4,800, 4,800, 2,400
samples (30% of the dataset), respectively. The results suggest that for Amazon
and Sina, the three models work remarkably well on ATF prediction. The per-
formance on all the metrics is close to 1. There are fewer than five prediction

Table 3. ATF Prediction performance comparison.

Amazon Sina Youku

Slice NN R-LSTM Slice NN R-LSTM Slice NN R-LSTM

Accuracy 0.9991 0.9991 0.9995 0.9988 0.9986 0.9983 0.9466 0.9536 0.9684
Precision 1 0.9996 1 0.9992 0.9987 0.9987 0.9642 0.9674 0.9789
Recall 0.9984 0.9988 0.9992 0.9983 0.9983 0.9979 0.9501 0.9583 0.9690

F1 score 0.9992 0.9992 0.9996 0.9987 0.9985 0.9983 0.9571 0.9628 0.9739
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Table 4. Performance comparison
with Combine on Youku.

R-LSTM Slice NN Combine

Accuracy 0.9546 0.9546 0.9546 0.9693
Precision 0.9899 0.9728 0.9765 0.9826
Recall 0.939 0.9561 0.9523 0.9695

F1 score 0.9638 0.9644 0.9643 0.976

Table 5. Performance for ternary
classification.

R-LSTM Slice NN Combine

... 0.9439 0.9109 0.8607 0.9518

... 0.941 0.891 0.828 0.941

... 0.9192 0.8907 0.8299 0.9452

... 0.9281 0.8908 0.8289 0.943

errors for Amazon and Sina. For Youku, the performance is less impressive. The
values of the performance metrics vary between 0.94 and 0.98. Since Youku is
a video site, there are a lot of dynamically loaded content on its home page.
Therefore, regardless of the network conditions, the diversity of the content (or
the dataset) on its home page is a challenge to classification and thus reduces
the accuracy. Within the 2,400 samples, there are about 100 prediction errors,
an error rate roughly between 2% to 6%. Among the three models, R-LSTM
appears to be the best performer on Youku.

Training and Test Time. Fig. 9 shows the training and test time of the
three models on Amazon. The data volume of the training and test datasets are
about 11,200 and 4,800 samples, respectively. It shows that the training time of
R-LSTM is much higher than that of the other two models. The training time of
LSTM depends on the number of iterations, which is 100 in our model. Therefore,
backpropagation of LSTM needs to be performed 100 times per training batch. In
contrast, Slice and NN use fully connected neural networks as the classifier, which
requires only one backpropagation per training batch. As a result, the training
time of LSTM is much longer than that of Slice and NN. For test time, it is a
similar situation. The forward propagation of LSTM requires 100 executions to
generate an output, but the forward propagation of the fully connected neural
network only needs to be performed once to generate an output. The time it takes
R-LSTM to complete 4,800 predictions is much longer than it takes Slice and
NN. However, as backpropagation is only needed for training, not for prediction,
the gap between LSTM and NN/Slice on test time is much smaller than on
training time. The time required for the three models to predict 4,800 samples
is about 0.7s, 0.08s, and 0.07s, respectively. It confirms the possibility of using
our model to assess the user’s QoE in real-time.

6.2 Combine
Ensemble Learning. We combine the trained Slice, NN, and R-LSTM through
a fully connected neural network to generate a new model, Combine. The three
basic models were trained using the 70% of the total dataset as the training
dataset and were able to predict with few errors. If we reuse the 70% for Combine,
the inputs and the labels are likely to be the same or similar, making the training
no longer meaningful. Therefore, Combine uses the remaining 30% as its training
and test datasets. We still use 70:30 split of the dataset for training and testing.
It is observed that all models perform very well on Amazon and Sina with no
much difference, although Combine performs the best with no prediction errors
at all. The advantage of Combine is getting clearer on Youku. Table 4 shows
Combine’s performance on Youku in comparison with the other models. The
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performance of all models is not as great, because of the highly dynamic content
on Youku’s home page. However, Combine still performs the best on accuracy,
recall and F1 score, and only behind R-LSTM on precision. This motivates us to
further explore the effectiveness of ensemble learning on ternary classification.

Ternary Classification. Table 5 shows the performance on the test dataset.
The precision, recall, and F1 score here are established as follows: an initial value
of the metrics is obtained for each of the three QoE categories as a binary clas-
sification problem, and then a weighted average across the three QoE categories
is calculated, which becomes the value of the metrics shown in Table 5. It shows
that the performance of the models is substantially degraded for ternary classifi-
cation. This is expected because of the finer granularity of the QoE. R-LSTM is
the best performer among the three basic models, with the values of the metrics
ranging from 0.919 to 0.941. NN is the worst, with F1 score of only 0.8289. The
features used by NN do not describe well the differences between categories “1”
and “2”. Also as stated in § 4, NN’s inputs are not as independent as assumed. In
contrast, R-LSTM performs well because the accumulated data makes the input
statistically significant, which facilitates classification. Slice sits in the middle,
with the values of the metrics varying slightly around 0.90.

Combine performs the best across all the metrics, with their values all greater
than 0.94. Through ensemble learning, we use three weak classifiers to form a
strong classifier, making the model well suited for ternary classification.

6.3 Summary
WebQMon.ai can predict ATF well when users visit the websites, whether it is a
binary or ternary classification problem. R-LSTM performs the best among the
three basic models, but it takes the longest time to train and predict. Slice is
more balanced, having a reasonable performance with the shortest training and
prediction time. NN requires a short time to train and predict but has the worst
performance. Combine performs the best through ensemble learning. However,
since the model needs to use the results of the three basic models, it has the
longest training and prediction time. Furthermore, we collected data for four
months, during which the content of the websites changed greatly. Nonetheless,
our model still predicts ATF well, which proves that the model can be updated
by new data to accommodate changes in website content. It would be difficult
to do this through threshold settings or mathematical formulations. In addition,
the trained model takes up very little storage space, a minimum of 80KB and a
maximum of 6MB. WebQMon.ai only requires the referer from the application
layer, making it possible to deploy on edge routers.

7 Discussion

HTTP vs HTTPS. In contrast to current work, WebQMon.ai minimizes the
use of application layer data — it only needs the referer to aggregate the traffic
associated with a page. This is under the assumption that the content associated
with a page may be sourced from other sites. Nevertheless, if we are only inter-
ested in the content from a particular site, WebQMon.ai does not need access to
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application data at all. The limitation is that WebQMon.ai would not be able to
predict page-based QoE, as the objects of the page may be from different sites.
However, it can still provide a QoE assessment for the content from a particular
site. This is of great value to content providers as well as ISPs.

Placement. Predicting web-browsing QoE on the client-side usually occu-
pies user network bandwidth and needs the user to cooperate and install specific
software. It may provide the best possible prediction accuracy, but it is also the
most costly choice. If deployed on the server-side, it may work for the websites
who have the budget to do so. However, from the client’s point of view, this may
result in the least accurate prediction, and the prediction is limited to a specific
site. In contrast, WebQMon.ai can be deployed on edge routers/gateways, and
thus is transparent to the server and the client. In some scenarios, WebQMon.ai
may not be able to achieve the prediction as accurate as some client-based so-
lutions. But it can still achieve a high level of accuracy, and more importantly,
without the client-side constraints. WebQMon.ai has access to all the websites
that ISP’s clients are interested in. This enables close collaboration between ISPs
and content providers to serve their clients.

Versatility and real-time. WebQMon.ai is powered by a data-driven model,
which is easy to update and apply for all websites with different types of content.
It can be updated on a regular basis as long as there is new data, that is, WebQ-
Mon.ai has the ability to learn and adjust to the new context. Current solutions
that rely on empirical threshold settings or mathematical formulations are usu-
ally designed specifically to a certain site, limiting their applicability for other
sites. In addition, WebQMon.ai only needs to use lightweight neural networks to
achieve a high level of accuracy. This demonstrates not only that WeQMon.ai
can get updated quickly and work in a real-time fashion, but also the practical
applicability of machine learning in this field.

Fine-grained ATF prediction. WebQMon.ai can handle very well binary
and ternary classifications, which are common cases for QoE prediction. How-
ever, as the granularity of QoE classification increases, the performance of We-
bQMon.ai deteriorates. At some stage, finer-grained ATF prediction may be
required, which can be done through addressing the regression problem. The
mapping from ATF to QoE can then be done through Mean Opinion Score
(MOS) [7]. We can imagine this would improve the performance at the cost of
training and test latency, due to the complexity of the model.

8 Conclusion
In this paper, we present WebQMon.ai to predict web-browsing QoE. WebQ-
Mon.ai relies on packet-level measurements without deeply parsing the packet
payload, and thus can be deployed on edge routers/gateways instead of end
hosts. WebQMon.ai is data-driven, empowered by lightweight supervised learn-
ing methods, which enables the system to learn and adapt to new contents in
a timely manner. WebQMon.ai works very well for binary and ternary classi-
fication based QoE prediction, achieving a high level of accuracy in real-time.
Furthermore, we demonstrate the potential and feasibility of machine learning
methods in web-browsing QoE assessment.
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