MIMIC: SmartNIC-aided Flow Backpressure for
CPU Opverloading Protection in Multi-Tenant Clouds

Enge Song*, Nianbing Yu*, Tian Pan*, Qiang Fu', Liang Xu*, Xionglie Wei*,
Yisong Qiao*, Jianyuan Lu*, Yijian Dong*, Mingxu Xie*, Jun He*, Jinkui Mao*,
Zhengjie Luo*, Chenhao Jia*, Jiao Zhangi, Tao Huangi, Biao Lyu§*, Shunmin Zhu¥*
*Alibaba Group TRMIT University iPurple Mountain Laboratories §Zhejiang University ﬂTsinghua University

Abstract—In multi-tenant clouds, off-the-shelf x86 boxes are
widely deployed as middleboxes. With the rapid growth of cloud
traffic and the migration to NFV deployment in recent years,
CPU overloading at middleboxes becomes more of an issue.
From our data centers, we observed that the CPU overloading
was caused by heavy hitters. To address this issue, we propose
MIMIC, a cloud-scale flow backpressure system, implemented
onto our existing SmartNIC with FPGA acceleration. MIMIC
rate-limits the selected heavy hitters through a new per-flow
backpressure protocol and a new heavy-hitter detection system,
to protect the other tenants. The detection system is based on
hierarchical memory design, leveraging on-chip SRAM and off-
chip DRAM, which can handle highly concurrent cloud traffic
without the losses of flow information. We extend the design by
adding a pre-filtering procedure for rapid detection. To avoid
CPU being flooded by FPGA through frequent heavy-hitter
reporting, due to their performance disparity, the CPU queries
the FPGA on demand. The backpressure protocol is non-invasive
to protect tenant privacy and allows controllable rate-limiting
through the novel use of ECN and meter tables. The SmartNIC
acts as a man in the middle to facilitate heavy-hitter detection
and per-flow backpressuring. In a production setting, we observe
that MIMIC can react quickly and bring down CPU load to the
normal level within 10ms without packet losses.

I. INTRODUCTION

Cloud services have been increasingly adopted by organi-
sations and individuals [1]. This trend is accelerated by the
roll-out of 5G mobile networks and the pandemic. Cloud
vendors are motivated to provide a diverse range of services
appealing to customers. As a major cloud vendor, we have
observed the rapid growth of cloud traffic in recent years.
We start experiencing more often CPU overloading at our
NFV-based middleboxes on the path of east-west traffic (VM-
VM) (Fig. 3). By looking into individual CPU overloading
occurrences, we found that CPU overloading was caused by
heavy-hitter flows (Top-1 flows in Fig. 2). In a multi-tenant
cloud, due to infrastructure sharing, CPU overloading may
lead to packet losses and long latency across all the tenants
whose traffic goes through the CPU, even if the majority of
the tenants do not contribute to the heavy hitters.

CPU overloading at middleboxes is now a particular issue
as we are migrating from bare-metal x86 to NFV (Network

This work was supported by Alibaba Group through Alibaba Innovative
Research Program. Co-corresponding authors: Tian Pan, Xionglie Wei and
Shunmin Zhu.

978-1-6654-8234-9/22/$31.00 ©2022 IEEE

- 5 a FZ] RegonA HEEE Region D ;\?1'0
24 | [Z<] RegionB EEH Region E © 0.8
= k H BEEE Region C >
23 K a 06
E] ©
s2 E H t I S04
5 -
31 Lo2
S [Top-1 HHE Top2 [Others
0- e S e e s e s
1 2 4 6 12 3 45 6 7 8 9 10 11 12
Week (30 Nov, 2021-10 Jan, 2022) CPU overload scenes

Fig. 1. CPU overloading occurrences Fig. 2.
per week across different regions.

CPU overloading by heavy
hitters (noticeably Top-1 flows).

Function Virtualization) based deployment where VNFs (Vir-
tual Network Functions) are built above NFV hypervisors
such as KVM [2] (Fig. 3). Network functions such as load
balancing, private gateway, firewall, VPN and NAT (Network
Address Translation) are getting deployed in the NFV nodes
for its programmibility, flexibility and rapid deployment [3],
[4]. However, all these conveniences are achieved at the cost
of performance — CPU overloading becomes more of an
issue. This is in line with our experience of actual deploy-
ment (Fig. 1). Our middleboxes follow the run-to-completion
model [5], hashing the flows randomly onto different CPU
cores via RSS (Receiver-Side Scaling) for load balancing [6].
The RSS-based flow hashing ensures the affinity between the
flow and the core, and thus fast and in-order packet processing.
However, this affinity may lead to CPU core overloading in
the presence of heavy hitters.

There are three possible ways to tackle this problem: scaling
up middlebox capacity, load balancing and backpressuring.
Our experience shows that while a CPU core is being over-
loaded by a heavy hitter, the other cores still have capacity not
utilized. Scaling up middlebox capacity is not an efficient solu-
tion. On the other hand, the SmartNIC with FPGA acceleration
has the same problems as Tofino: limited on-chip resources [7].
Besides, VNFs are highly customized and diverse according to
the users’ requirements, which makes it difficult to configure
hardware logic in advance. Load balancing is another way to
handle this issue. Stateful flow mapping may map a potential
heavy hitter to the CPU core with the lightest load, while
flow migration may reallocate a heavy hitter from one core
to another [8]. However, the RSS-based flow hashing works
reasonably well in terms of load balancing among the cores in
the absence of heavy hitters, due to the effect of multiplexing.
In either case, the “unlucky” core that gets the heavy hitter
may get overloaded. Naturally we may break up the heavy-

Data center underlay (Spifie, Leaf, ToR)

Rate-limiting

points Heavy hitter detection

[

Congestion notification points

Hypervisor

[e [Hyparvisor]

Network Function
Virtualization layer

Ly
= CleIc)

Receiver

DU
elcicl e

i VPN Private

Sender

CPU overloading points
Fig. 3. Design overview. CPU overloading may happen at middleboxes.

hitter flow into pieces (flowlets or packets), and then distribute
the pieces among the cores. While it may sound plausible,
there are practical issues. Packets would likely be processed
and then arrive at TCP receiver out-of-order, causing TCP
retransmissions. Reordering has to be done before sending out
the packets. Furthermore, the VNFs in the middlebox often
have to maintain the state of individual flows. In this case,
state sharing among the cores has to be maintained, imposing
another challenge in addition to reordering. All these are not
trivial tasks in a high-performance setting.

A sensible solution is backpressuring: identify the trouble-
some heavy hitters and then rate-limit them to protect the
other tenants in the network. To this end, we propose a
cloud-scale flow backpressure system, called MIMIC, which
is developed onto our existing production SmartNIC with
FPGA acceleration. The basic idea is to (1) trigger heavy
hitter detection at the middlebox when the CPU utilization
exceeds a threshold, and (2) backpressure the heavy-hitter
flow to the traffic source. The SmartNIC acts as a man
in the middle to facilitate heavy hitter detection as well as
backpressuring selected heavy hitters. To minimize the impact
on the other tenants and packet losses, rate-limiting is carried
out at the source node. Based on this, we designed a per-flow
backpressure protocol, which is capable of:

* Selecting the appropriate flows for rate-limiting. Among
the reported heavy hitters, only the ones contributing signif-
icantly to the overloading are selected.

* Controllable rate-limiting. The heavy hitters are rate-
limited to a desired level through the manipulation of
meter tables as well as ECN marking frequency for TCP
congestion control.

* Being transparent to the hosts by “deceiving” ECN. The
ECN capability is enabled at SmartNIC without modifying
the host as long as the host is willing to enable ECN when
requested (default in Linux 3.x [9]).

The existing SmartNIC has the ability to keep flow statistics
for all ongoing flows for monitoring, auditing and accounting

services. This is achieved through a hierarchical memory
system by taking advantage of the on-chip SRAM and the
off-chip DRAM. On top of that, we designed a heavy hitter
detection mechanism by adding a light-weight heavy hitter
pre-filtering procedure. Through the pre-filtering, a set of
ongoing flows are selected as potential heavy hitters, ready to
be used by the backpressure protocol, which then determines
the heavy hitters to rate-limit. To avoid CPU being flooded
by FPGA through frequent heavy-hitter reporting due to their
performance disparity, the CPU queries the FPGA on demand.

As a result, MIMIC can achieve a fast reaction time to rate-
limit heavy hitters to the desired level across a wide range of
scenarios. Our main contributions are summarized as follows:

* We propose a new heavy-hitter detection system based on
hierarchical memory design, which results in no losses of
flow information for improved detection accuracy. With the
support of the pre-filtering procedure, the heavy hitters can
be determined within 1ms.

* We propose a per-flow backpressure protocol, which can
pinpoint the troublesome heavy hitters. It is non-invasive,
as no modification is needed to the host. “Deceiving” tricks
are done at SmartNIC to enable ECN, but only applied if
the host is not against the use of ECN. It allows controllable
rate-limiting through the manipulation of meter tables and
ECN marking frequency for both TCP and UDP traffic.

* We extend our production SmartNIC, facilitating accurate
heavy-hitter detection and swift per-flow backpressuring.
The additional pre-filtering procedure only requires two
Pingpong tables in SRAM to keep the FlowID of the
potential heavy hitters.

MIMIC has been deployed in our data centers to resolve
CPU overloading at middleboxes caused by heavy hitters. It
can bring down CPU load to the normal level within 10ms
with no or almost no packet losses.

II. DESIGN OVERVIEW

MIMIC is designed with two modules: 1) the end-to-end
per-flow backpressure protocol (§II), and 2) the FPGA-based
heavy hitter detection module (§1V).

We extend the existing SmartNIC used by the hosts and the
middleboxes in our production cloud (Fig. 3). The NFV-based
middleboxes on the path of east-west traffic (VM-VM) may
experience CPU overloading. This makes its SmartNIC the
ideal point to detect heavy hitters. The middlebox SmartNIC
and the receiver SmartNIC and VM may act as the point(s) to
facilitate congestion notification, while the sender SmartNIC
and VM may act as the point(s) to rate-limit the selected flows,
depending on the scenarios (§III).

As shown in Fig. 4, the SmartNIC consists of three parts:
CPU, FPGA and off-chip DRAM. The x86 server hosts the
VMs through a hypervisor where light-weight scripts are
running to monitor CPU utilization. When the CPU utilization
in the x86 server exceeds the pre-defined threshold, this will
trigger MIMIC on the SmartNIC (light blue arrow line in
Fig. 4). The CPU will query the FPGA for heavy hitter
information. The FPGA has the FlowID of all current heavy

— Direction of operation
Store the Per=\ — . —p Require/read heavy hitter info
flow counting

for all flows = = =P Return heavy hitter info

------ P> Trigger ECN marking

Monitor the
VM CPU

Trigger | utilization
MIMIC ; />
') H script
Heavy hitter < PCIE—® ’ W
pre—filtering : N e A N
Rate-limiting N Hypervisor
Jowselection /. ... o.oooveeveeensd L] yp _______________________ W
SmartNIC X86 server

Fig. 4. SmartNIC architecture with x86 server. CPU overloading at x86 server
will trigger MIMIC on SmartNIC. SmartNIC CPU gets a set of heavy hitters
from pre-filtering, to be used by the backpressure protocol determining the
appropriate heavy hitters for rate-limiting.

hitters in its cache obtained through pre-filtering (§IV-C).
Based on the FlowID, the FPGA reads the counters of these
flows stored in the DRAM. This process is shown by the red
dash-dotted arrow line in Fig. 4. The FPGA then returns the
heavy hitter information to the CPU (green dashed arrow line
in Fig. 4) where the proper heavy-hitter flows are selected for
rate limiting (§ III-A). The CPU then inserts ECN marking
rules into the flow table entries for these selected heavy-hitter
flows (purple dotted arrow line in Fig. 4). The selected flows
are then rate-limited accordingly.

Our current production system already has per-flow count-
ing statistics for all ongoing flows for monitoring, auditing
and accounting services. In Fig. 4, this is achieved through
a two-level memory design, leveraging the on-chip SRAM
and off-chip DRAM. The heavy hitter pre-filtering procedure
can readily utilize these statistics to pre-select a set of heavy
hitters, to be used by the backpressure protocol, which then
determines the appropriate heavy hitters for rate-limiting.
Our design capitalizes on existing mechanisms such as TCP
congestion control [10], ECN [11] and meter tables [12] for
rate-limiting. MIMIC is designed in a way that it can adapt to
any improvements on these mechanisms if they get deployed.

A. Design challenges and goals

Non-invasive per-flow backpressure. MIMIC only rate-
limits the specified heavy-hitter flows [13] without affecting
other flows to ensure tenant isolation [14], [15]. Modifications
need to be transparent to users. The design should not modify
the user’s protocol stack and OS configurations, or emulate
the behavior that is against the user’s setting. For example,
if the tenant chose to use CUBIC for congestion control, we
would not emulate the behavior of DCTCP. If the tenant does
not want to initiate or accept ECN, we will not emulate the
behavior of ECN.

Controllable rate-limiting for both TCP and UDP traffic.
TCP congestion control has its own rate control mechanism
and tends to generate bursty traffic making transmission rate
fluctuate. On the other hand, UDP has no built-in feedback
mechanisms to react to congestion. It is essential to have a
mechanism ensuring that the transmission rate of the heavy
hitter is maintained at the expected level.

Accurate, lightweight and rapid heavy hitter detection.
Accurate detection ensures that the right flows are rate-limited
without affecting other legitimate traffic. This requires per-flow
counting over a large time window so that micro-bursts can
be filtered out. However, this will consume a large amount
of memory, not doable with the limited on-chip memory. To
achieve a fast backpressure reaction, the detection needs to be
running all the time in the background handling cloud-scale
traffic. However, the bandwidth disparity between SRAM and
DRAM as well as FPGA and CPU may create bottlenecks
with frequent updates. This requires a lightweight detection
system, which is able to handle these complexities.

III. BACKPRESSURE PROTOCOL

Among the reported heavy hitters obtained from pre-filtering
(§IV-C), the backpressure protocol selects the appropriate
flows for rate-limiting (§III-A). We then design the protocol
in a progressive fashion. BK-VM (§III-B) assumes the full
support of ECN and can only work with TCP traffic. BK-
NIC (§III-C) takes advantage of meter tables for rate-limiting
and thus can work with both TCP and UDP traffic, but may
generate a large number of packet losses, due to the nature
of meter tables. BK-VM&NIC ($III-D) leverages both BK-
VM and BK-NIC, but do not assume the full support of ECN.
Instead, it enables ECN at SmartNIC by “deceiving” ECN as
long as the host is willing to enable ECN upon request (default
in Linux 3.x [9]).

A. Heavy hitter selection

Among the heavy hitters reported from pre-filtering, if we
only rate-limit Top-1 flow, the released capacity can be quickly
taken up by the other heavy hitters of the similar rates. On
the other hand, it may not be necessary to rate-limit Top-2
flow if it is much smaller (Fig. 2). To handle this problem,
we design a threshold-based algorithm to select the flows for
rate-limiting. As engine CPU utilization relates more directly
to PPS than BPS [16], packet counts are commonly used to
indicate the size of the flows [13], [17]-[19]. In our design,
we compare the packet count of an individual heavy hitter to
the total packet count for all reported heavy hitters. This gives
us an individual-to-all packet count ratio. The heavy hitters
with a packet count ratio greater than a predefined threshold
will be selected for rate-limiting. The threshold ratio can be
selected based on individual production settings.

B. Backpressure to VM

Similar to ConQuest [13] and NFVnice [3] (when its service
chain spreads across multiple hosts), a straightforward solution
is to use ECN for end-to-end per-flow backpressure, which
we refer to as BK-VM. BK-VM is based on the assumption
that ECN can be established between the client and the
server through negotiation. The negotiation is affected by host
settings, e.g., /proc/sys/net/ipv4/tcp_ecn in Linux 3.x [9]. Here
is how ECN works to backpressure heavy hitters.

ECN modes and establishing ECN. If tcp_ecn is set to 0,
ECN is disabled. If set to 1, the host will initiate ECN and

Algorithm 1: BK-VM deployment.

1 Function Select_flows ():

2 Get elephant flow information from FPGA.

3 Calculate the individual-to-all packet count ratio and select the
flow into FlowID_set whose ratio exceeds the threshold.

4 return FlowID_set

o)

5 Function CE_labelling (packet, FlowID_set) :
6 Get FlowlD of the packet.

7 if FlowID in FlowID_set then

8 | Set CE field in the IP header to 1.

9 Function Intermediate_NIC1 (packet):

10 if CPU utilization > Threshold then

1 | FlowlD_set = Select_flows ()
12 CE_labelling (packet, FlowID_set)
13 | Forward the packet.

accept it if requested. If set to 2, the host will not initiate ECN
but will accept if requested (default in Linux 3.x [9]). On the
client side if tcp_ecn is set to 1, the client will request ECN
on establishing the TCP connection by setting the Congestion
Window Reduced (CWR) and ECN-Echo (ECE) field to 1 in
the SYN segment. On the server side if tcp_ecn is set to 1
or 2, in response the server will set the ECE field to 1 in the
SYN-ACK segment, and move its state machine in the kernel
to the state TCP_ECN_OK, indicating ECN connectivity with
the client. On receiving the SYN-ACK segment, the client will
also move its state machine to the state TCP_ECN_OK [20].

ECN marking for congestion control. With ECN enabled,
the sender marks its packets with the ECN Capable Transport
(ECT) field set to 1. This allows intermediate routers that
support ECN to mark those IP packets using the Congestion
Experienced (CE) field instead of dropping them, in order
to signal impending congestion. Upon receiving an packet
with ECT and CE set to 1, the receiver echoes back the
congestion occurrence with the ECE field set to 1 in its
ACK. When the sender receives an ACK with ECE set to
1, it reduces its congestion window (CWND) and thus its
transmission rate, and then sends packets with CWR set to 1 to
acknowledge receiving the congestion indication. The receiver
keeps sending ACKs with ECE set to 1 until it receives a
packet with CWR set to 1.

If the CPU utilization of some forwarding instances exceeds
the threshold, the protocol selects the heavy hitters to rate-
limit (line 10-11 in Algorithm 1). It will then mark the CE
(Congestion Experienced) of these flows and forward the
packet (line 12-13). The sender will reduce its rate accordingly.

BK-VM is the simplest solution, leveraging the existing
congestion control and ECN mechanisms. However, it assumes
full ECN support and does not work with UDP traffic.

C. Backpressure to SmartNIC

Another solution is to use a meter table [21] for rate-
limiting at the sender host. This only requires the SmartNICs
at the sender and the middlebox to work together, and thus is
transparent to the VMs. The middlebox generates a packet to
notify the sender host of the heavy hitter to rate-limit. This
is similar to NCF [22]. This design is referred to as BK-NIC.
Algorithm 2 describes its pseudocode. BK-NIC is conceptually

If receiving a
specific packet:
Hijack it and
add meter table
or heavy hitter
rate-limiting

SmartNIC

1)If VNF CPU utilization exceeds threshold:
Acquire heavy hitter information from FPGA

Generate a specific
packet to notify the
traffic source

Heavy hitter
detection with

SmartNIC

Meter table for
rate limiting

’VM-VM‘

Sender

o [

Receiver

(e [o

Intermediate Node

Fig. 5. BK-NIC architecture, using meter tables to rate-limit.

Algorithm 2: BK-NIC deployment.

1 Function Select_flows():

2 | -

3 Function Intermediate_NIC2 ():

4 if CPU utilization > Threshold then

5 FlowID_set = Select_flows ()

6 for flow in FlowID_set do

7 Send a specific packet with 5-tuple to notify the traffic
source.

8 Function End_NIC1 (packet):

if The packet is a specific packet then

10 L Hijack it and add meter table with 5-tuple in the payload.

similar to NFVnice [3], which drops packets early at the
beginning of the service chain through the NFV manager.

The per-flow backpressure is conducted with the following
steps shown in Fig. 5: (0) heavy hitter detection runs with
SmartNIC acceleration; (I) if the CPU utilization of some
forwarding instance exceeds the predefined threshold, the
SmartNIC software will query FPGA to obtain the current
heavy hitters and then select the ones to rate-limit based
on packet count ratio; (@) the intermediate node will then
generate a specific packet to notify the traffic source of these
heavy hitters (we can use one bit in the VXLAN header
to specify that it is a notification packet and store the 5-
tuple of the heavy hitter in its payload); 3) on receiving the
notification packet, the SmartNIC at the traffic source will
intercept the packet and add corresponding meter table entries
for heavy hitter rate-limiting. The meter table makes sure that
the transmission rate of the heavy hitter does not go beyond
a certain limit, otherwise packets will be dropped. The meter
table is implemented based on token buckets [21].

BK-NIC is independent of the guest protocol stack without
needing any special support such as ECN, and thus works with
both TCP and UDP heavy hitters. The notification packet may
include the data rate to be limited to, and periodically update
the meter table based on the current CPU load.

D. Backpressure to VM and SmartNIC

Although BK-NIC meets our design goals, the meter table
rate-limiting may lead to excessive packet losses. Modern
operating systems have some support for ECN, but they are
usually shipped with ECN partially disabled. To reduce packet
losses, we may leverage ECN with some ‘tricks’ to enable
ECN for backpressuring, in addition to meter table rate-

TABLE I
BACKPRESSURE SCENARIOS.

Client Server Server to Client Client to Server
tcp_ecn tcp_ecn transmission transmission
1 1,2 VM&NIC VM&NIC
0,2 1,2 VM&NIC NIC
1 0 NIC VM&NIC
0,2 0 NIC NIC

limiting. This approach is referred to as BK-VM&NIC, as it
backpressures to both VM and SmartNIC at the same time.

By analysing Linux kernel code [20], we find that as long
as ECN state machine transforms to TCP_ECN_OK, we can
backpressure using ECN. Table I shows the scenarios whether
we can use ECN for backpressuring, in relation to client and
server tcp_ecn values. VM&NIC means ECN can be used
to backpressure to the source. NIC-only means ECN cannot
work.

Full ECN support (Row 1 in Table I). As shown in § III-B,
if tcp_ecn is 1 for the client and 1 or 2 for the server, the client
will initiate ECN and the server will accept it. This enables
backpressuring to both client and server VMs.

Deceiving ECN scenario 1 (Row 2 in Table I). When the
tcp_ecn of the client and the server is set to 2 as default [9], a
case in this scenario, the client will not initiate ECN, although
the server would accept it if requested. ECN can not be
established. However, we may ‘trick’ the server and move
its state machine to the TCP_ECN_OK state by modifying
the SYN segment from the client. The SmartNIC intercepts
the SYN and sets the CWR and ECE fields to 1, and then
forwards it to the server. After that, we can backpressure to
the server VM using ECN, but not the client VM.

Deceiving ECN scenario 2 (Row 3 in Table I). If client
tcp_ecn is 1 but server tcp_ecn is 0, the client will initiate
ECN, but the server will ignore. Similarly, we may ‘trick’
the client by modifying the SYN-ACK segment and move
its state machine to the TCP_ECN_OK state. We can then
backpressure to the client VM, but not the server VM.

ECN not working (Row 4 in Table I). In the cases when
both client and server are not interested in establishing ECN
connectivity, we cannot backpressure to the VMs.

Algorithm 3: BK-VM&NIC deployment.

1 Function Intermediate_NIC1 (packet):
2 .

3 Function End_NIC2 (packet):
4 if TCP_FLAGS = SYN then
5 | Set CWR and ECE to 1.

6 if TCP_FLAGS = SYN-ACK then
7 | Set ECE to I.

8 if CE = I then

9 Set ECT to 1.

10 Set ECE of ACK packets with reversed 5-tuple to 1 until
1 if ECE = I then

receiving a packet with CWR of 1.
12 Add meter table with reversed S5-tuple.
13 Set CWR of one packet with reversed 5-tuple to 1.
14 Forward the packet.

Implementation. Fig. 6 shows the backpressure pipelines

Client Middle box Server

If flag = SYN-ACK: 6

Set ECE to 1 to 'trick’

If flag = SYN:
Set CWR and ECE to 1

hitter

to 'trick’ the server. the client.
detection T
R —— with FPGA If CWR and ECE of SYN Cz)
packet = 1:

packet = 1:
Send a ACK packet and
move to TCP_ECN_OK.

Send a SYN-ACK packet
with ECE of 1 and move
to TCP_ECN_OK.

@ If VNF CPU utilization exceeds threshold:
Acquire heavy hitter information from FPGA

@ Set CE to 1 for heavy hitters q
\

S If CE = 1:
Set ECE to 1in ACK packets to notify the traffic
source until receiving a packet with CWR of 1

If receiving an ACK packet with ECE of 1:
Add meter table for heavy hitter rate-limiting

—?_Q

1
"

If ECE of ACK packet = 1:
Reduce the CWND and set the CWR to 1 in next packet.

-

Fig. 6. BK-VM&NIC pipeline. It shows the steps to ‘trick” the server (white
label) and the client (black label), respectively. This will enable ECN for the
transmission from the server or client. The trick only works if the host is
willing to use ECN (Row 2 and 3 in Table I).

to ‘trick’ the client and the server VMs, with black and white
labels, respectively. Using the pipeline to ‘trick’ the server VM
as an example, here are the steps to enable ECN for backpres-
suring: (0) execute heavy hitter detection as with BK-NIC; (D
when the SYN segment from the client VM is intercepted, the
SmartNIC marks its CWR and ECE fields to ‘trick’ the server;
@) on receiving the SYN with CWR and ECE of 1, the server
VM sends a SYN-ACK segment with ECE of 1 and transforms
its ECN state machine to TCP_ECN_OK state; @) if the CPU
utilization of some forwarding instance exceeds the predefined
threshold, the SmartNIC software will query FPGA to obtain
the current heavy hitters and select the ones to rate-limit; @
then the intermediate node will mark CE for the packets of
these flows to signal the impending congestion; (3) when the
packet with CE of 1 is forwarded to the SmartNIC of the client
VM, a match-action rule will be set to mark the ECE of the
ACK packets until a packet with CWR of 1 is received; ©)
on receiving the ACK with ECE of 1, the SmartNIC of the
server VM adds a meter table for heavy hitter rate-limiting; (7)
when the server VM receives the ACK with ECE of 1, it will
reduce the CWND and mark the CWR of the next outgoing
packet belonging to this flow. We follow the steps with black
labels to ‘trick’ and realise backpressure to the client. The
SmartNIC of the end-host implements all the green blocks
in Fig 6 (line 3-14 in Algorithm 3). The SmartNIC of the
intermediate node implements all the yellow blocks (line 9-
13 in Algorithm 1). The blue blocks are implemented by the
existing protocol stack.

Meter table working with ECN. Backpressuring to Smart-
NIC is often a backup method for backpressuring to VM’s
protocol stack. In the scenarios where the client or the server
cannot be ‘tricked’, the meter table is the last resort for rate-
limiting. Furthermore, while we do have a mechanism to set
CE marking frequency so that the transmission rate of the

heavy hitter is maintained at a desired level, TCP congestion
control tends to make the transmission rate fluctuate. The
meter table can help stabilize the rate.

CE marking frequency. With high marking frequency at
the middlebox, we may achieve lossless rate-limiting because
of the low transmission rate imposed by TCP congestion con-
trol. But the throughput may suffer. With low frequency, the
heavy hitter may still be able to maintain a high transmission
rate, overloading the CPU. As a result, backpressuring to
SmartNIC, that is, the meter table may kick in to further reduce
the transmission rate by dropping packets. §V-A describes how
to set a suitable frequency to achieve backpressure and high
throughput with no or almost no packet losses.

E. Discussions

For TCP heavy hitters, BK-VM&NIC can achieve lossless
backpressure by deceiving ECN and the careful setting of
CE marking frequency. BK-VM&NIC can also regulate the
transmission rate when it fluctuates due to the nature of TCP
congestion control. In contrast, BK-NIC has to rely on meter
tables to rate-limit by dropping potentially a large number of
packets. BK-VM has limited applications due to its assumption
of full ECN support. For UDP heavy hitters or when ECN is
not available, BK-VM&NIC and BK-NIC work in the same
way, rate-limiting by meter tables.

CE marking, packet dropping and rwnd. Our current
implementation uses CE marking, emulating a fixed packet
loss rate to control the transmission rate of the heavy hitters
without dropping packets. CE marking frequency can be
adjusted to achieve the desired transmission rate. If we relax
the packet dropping policy, we may drop the packets of the
heavy hitter at the middlebox to reduce its transmission rate.
Alternatively, if we relax the non-invasive policy, we may set
rwnd in the ACKs to a size that rate-limits the heavy hitter to
the desired level without dropping packets [23]-[26].

Invasiveness. Our current approach keeps invasiveness at
the minimum. We only play ECN ‘tricks’ if the VMs are
willing to accept ECN. That is, the VMs have their tcp_ecn
set to 1 or 2. Then, it is entirely up to their own congestion
control to react to ECN marking. There are some interesting
proposals [25], [26] that allow vendors to enforce an optimized
congestion control (e.g., DCTCP) at vSwitch or hypervisor
without modifying the VM’s protocol stack. The TCP seg-
ments and ACKs are intercepted and the relevant flags may
be reset to enable ECN and emulate DCTCP. The rwnd in the
ACKs is reset to reflect DCTCP congestion control (cwnd).
This essentially forces the VM’s TCP stack to emulate DCTCP
or any congestion control schemes. This is not our goal to have
this level of interference, given that we are only interested in
some heavy-hitter flows at times. However, if such proposals
get deployed we may choose a congestion control scheme
favorable to backpressuring.

IV. HEAVY HITTER DETECTION

To design a lightweight but accurate heavy hitter detection
mechanism for rapid detection, there are some challenges.

1.Periodic update (1ms)
}\ 2.Bucket overflow
3.Counter overflow

If counter
exceeds the
threshold, set flag
to 1 and write
FlowID

Kick out and compare
counter with threshold
.

Pingpong
table A H

Read

FlowID :
Pingpong H
table B H

Read counter of these flows

Packet in

Hash buckets

FlowID

Request heavy
hitter info

Interface
a logic

Return heavy

hitter info

Flow table
MIMIC is
triggered

Off-chip DRAM

Fig. 7. FPGA architecture. A hierarchical memory desgin — on-chip hash
buckets and off-chip flow table — originally for monitoring, auditing and
accounting services. We extend the architecture by adding a lightweight heavy
hitter pre-filtering procedure through the use of Pingpong tables.

On-chip SRAM + off-chip DRAM. Accurate detection
relies on per-flow counting over a large time window to avoid
misidentifying micro-bursts as heavy-hitter flows. The micro-
bursts are tens of milliseconds in duration [27]. There are
tens of millions of flows within a few seconds [28]. To store
per-flow counting (~100bits) for this sheer number of flows
will require gigabits of memory. However, the on-chip SRAM
is limited (e.g., 345Mbits for Xilinx’s vu9p [29]), and thus
cannot accommodate per-flow counting on its own. The off-
chip DRAM has the space. However, its limited bandwidth
is an issue. If FPGA reports per-flow counting directly to
DRAM every time when a packet is processed, the memory
bandwidth will be insufficient. To this end we adopt a two-level
hierarchical memory design, combining the on-chip SRAM
with the off-chip DRAM (§ IV-A and § IV-B). This is already
implemented and deployed in our production systems for
monitoring, auditing and accounting services.

Bandwidth disparity between CPU and FPGA. The
detection mechanism leverages this existing two-level memory
design by adding a pre-filtering procedure (§ IV-C), which
pre-selects a set of potential heavy hitters to be determined
by the backpressure protocol (§ III-A). The backpressure
protocol running on CPU gets this list of potential heavy
hitters from pre-filtering running on FPGA through a heavy
hitter query procedure (§ IV-D). However, there is a significant
performance disparity between the two. The FPGA may push
the heavy hitter information to the CPU. If the frequency of
pushing is too high, the backpressure protocol running on
CPU may be overwhelmed. If it is too low, the backpressure
protocol may not have the latest heavy hitter information. To
address this issue, we adopt a pull method. The backpressure
protocol pulls the list of heavy hitters on demand.

A. FPGA-based hierarchical design

The per-flow counter updates for every single packet. Given
the high throughput in the cloud (e.g., tens of millions of PPS),
this is a tremendous amount of work. If we process each packet
by software with DPDK acceleration, the CPU core may be
overloaded, resulting in packet losses. Our existing FPGA-
based SmartNIC is a handy choice for this task.

Fig. 7 shows the FPGA-based hierarchical design taking
advantage of the speed of the on-chip SRAM and the space and
affordability of the off-chip DRAM, which is already deployed

in our production cloud. The design consists of (1) a CPU on
the SmartNIC for triggering the heavy hitter query procedure
when the CPU utilization spikes occur in the x86 server, (2) an
FPGA for maintaining Hash Buckets to store the most recently
counted flow states in a short-time window (e.g., 1ms) and
a Pingpong Table to store the FlowID of the current heavy
hitters obtained through pre-filtering, and interfacing with the
off-chip DRAM, and (3) an off-chip DRAM for maintaining
the complete flow states in a long-time window (e.g., 25).

B. Hash buckets on FPGA

To deal with the limited on-chip memory, the current work
has to trade off between detection accuracy and memory usage,
resulting in some loss of flow information. Hash table keeps
the state of each flow in an entry, which works well with per-
flow counting for all flows, and has a low level of computation
complexity. However, hash table does need a large amount of
memory space. Our hierarchical design leverages the existing
deployment of off-chip DRAM, making hash table a good fit.
The trade-off between detection accuracy and memory usage
is no longer an issue in our design.

The short-time flow table is stored in the on-chip mem-
ory based on hash buckets [30]. The hash function is only
performed once each time when a new item is added to the
bucket. A hash bucket has multiple slots to accommodate
hash collisions. Each slot identifies a distinct FlowID and its
counter. The off-chip DRAM helps keep the long-time flow
table and handle the overflow of the hash buckets on FPGA.

FPGA overflow. When a packet arrives, FPGA identifies
the bucket for its flow through hash function. If the flow is
already present in the bucket, FPGA updates the corresponding
flow counter. If the flow is not in the bucket, and there is
an empty slot, we insert the new flow to the empty slot.
Howeyver, if the bucket is full, and the flow is not found in
the bucket, this results in bucket overflow. FPGA replaces the
flow entry that has the minimum counter value in the bucket
with the incoming flow. The evicted flow entry including its
counter is copied into DRAM (Fig. 7). If the flow entry already
exists in DRAM, the counter will be updated accordingly. In
addition, the counter of each slot has an upper value. Too many
packets of the same flow will result in counter overflow. The
corresponding flow entry will be removed to DRAM. To avoid
an excessive number of overflows, FPGA performs periodic
updates every 1ms to evict all the flow states to DRAM.

C. Heavy hitter pre-filtering

The flow table in the DRAM keeps tens of millions of flows
with gigabits of memory [28]. It is straightforward to identify
the heavy hitters through sorting the counter, but there are
some issues. Since the time required for sorting (approximately
10s) is much longer than that of periodic updates from
FPGA (1ms), the counters constantly change during the sorting
process, an inconsistent state leading to inaccurate heavy hitter
detection. To tackle this problem, we introduce a heavy hitter
pre-filtering mechanism. When the counters in the DRAM are
updated by bucket and counter overflows or periodic updates,

FPGA will write to the Pingpong table the FlowID for the
flows whose counters exceed a threshold (Fig. 7). These flows
are considered heavy hitters. Through pre-filtering, a large
number of mice flows are filtered out and the flows that may be
causing CPU overloading are left, which significantly reduces
the time required for heavy hitter detection.

D. Heavy hitter query

In our design the backpressure protocol pulls the heavy hit-
ter information from the FPGA in an on-demand manner. The
CPU reads the pre-filtered heavy hitter information (§ IV-C)
through the interface logic in FPGA (Fig. 7). That is, when
CPU utilization in the x86 server exceeds the threshold, the
CPU on the SmartNIC will issue a request to FPGA to get
the current heavy hitters, which are stored in the Pingpong
table through pre-filtering. To prevent blocking while reading
and writing, there are two Pingpong tables, A and B, reading
and writing to different tables. When FPGA reads table A for
heavy hitter FlowID, pre-filtering writes to table B, and vice
versa. When no reading occurs, pre-filtering writes FlowID
randomly to one of the tables for load balancing. To prevent
that the same FlowID gets written to Pingpong table multiple
times, a 1-bit flag is used to indicate whether a flow has
been recorded as a heavy hitter through pre-filtering. Upon
the request from the CPU, FPGA generates a read command
to both Pingpong tables A and B to get the FlowID of the
heavy hitters, and reads the corresponding counter from the
DRAM. FPGA then reports this information to CPU through
interrupts. With this on-demand pulling, the CPU can obtain
the heavy hitter information in a timely manner without wast-
ing processing resources. Upon receiving the heavy hitters,
backpressure is then performed on the selected flows according
to the procedures in § III.

V. EXPERIMENT SETTING

We select one region to evaluate MIMIC. The guest OS is
CentOS 7 3.10.0-514.21.1.e17.x86_64 with CUBIC TCP set as
default. Each FPGA-based SmartNIC is configured with one
100Gbps NIC [31].

A. CE marking frequency

CE marking frequency has an impact on rate-limiting the
selected TCP flows at the right level. However, different TCP
variants have its own mechanism to adjust the congestion win-
dow. This potentially makes finding a universal CE marking
frequency impossible. However, as the standard TCP works
well in the networks with short RTTs, the newly proposed
TCP variants such as CUBIC all aim (or are supposed to aim)
to be fair, when competing with the standard TCP flows for
bandwidth in such networks. This means the response func-
tions of the TCP variants would exhibit a similar behavior as
the standard TCP in these networks. We did some experiments
to compare between the standard TCP and CUBIC with CE
marking frequency within the region between 10~ and 10~%.
They indeed exhibited the similar behavior. This gives the
confidence to have a CE marking frequency for a given RTT

900 503 l I Slot number=2
2 800 E I =1 Slot number=4
B 202 Il Slot number=8
s 2o.

3 700 S T
T —o— 156 —+— 500M S o1 =
© 600 £0. él =
>
¢}
500 0.0 S N — R
0 5 10 15 20 25 30 16k 32k 64k 128k

Time (s) Bucket number

Fig. 8. CE marking frequency on Fig. 9. Bucket and slot numbers on
data rate. Transmission rate is limited overflow. 32k buckets with 4 slots: a
to around 850Mbps after CE marking good trade-off between overflow prob-
regardless initial transmission rates. ability and hardware resources.
in such networks, applicable to different TCP variants. The
marking frequency can be adjusted to suit individual flows.
Based on our experience, 99% of the flows have a rate
below 100Mbps and the CPU utilization of 1Gbps traffic
is about 15%, which is commonly seen for the servers in
data centers [32]. Considering the trade-off between CPU
protection and throughput, the target transmission rate could
be set to 800-900Mbps. We did some experiments with ECN
enabled without meter tables in place. The TCP traffic is
sent at different rates. The intermediate node marks CE at
a constant frequency (1 over 2000 packets). Fig. 8 shows that
with initial transmission rates at 2Gbps, 1.5Gbps and 1Gbps,
all are limited to about 850Mbps while the transmission rate
at 500Mbps is not affected. This observation is also supported
by theory that with a deterministic loss model the transmission
rate can be limited to a certain level. Therefore, if we want to
limit the transmission rate to 7" Mbps, the marking frequency
can be determined through response functions as well as
experiments. To reinforce rate-limiting, the band rate of the
meter table is also set to 7" Mbps to handle the busty nature
of TCP as well as the scenarios where ECN is not supported.
In the following experiments, the default band rate of the meter
table is set to 850Mbps and the default marking frequency is
set to 1 over 2,000 packets.

B. Hash bucket parameters

The number of hash buckets and its size are directly
related to bucket overflow probabilities. Frequent overflows
will lead to frequent updates between FPGA and DRAM
causing unnecessary overhead. We need to trade off between
the amount of required resources and overflow probabilities. A
small number of buckets may cause frequent bucket overflows.
With a large number of buckets, however, the allocated on-
chip memory may have a low utilization rate. In addition, the
number of slots in a bucket is proportional to the amount of
hardware support (e.g., LUTs, registers) used by FPGA for
calculations and lookups. We want to minimize the numbers
of buckets and slots with an acceptable overflow probability.

The number of buckets and slots are selected with perfor-
mance analysis through simulations. Suppose our SmartNIC
supports a maximum of 40Mpps packet processing rate, and
thus a maximum of 40k packets arrive within 1ms. We simu-
lated the hash bucket in software with 40k packets belonging
to a random number of flows. In comparison to the use of
production traffic, the simulation allows us to try out extreme
scenarios: a large (small) number of small (large) flows. Fig. 9

w
o
S

[XBN

S S

N
S
Periodic update entries (k)

N
o
S

,_\
o
S}

>

Counter/Bucket overflow times

o
=3

0 100 200 300 400 500 600 0 10 20 30 40
Concurrent flow number (k) Concurrent flow number (k)

Fig. 10. No. of flows on overflow/slot Fig. 11. No. of flows on overflow up-
utilization. For 40k flows (design as- dates. The number of bucket overflows
sumption) low overflow probability is increases rapidly with the number of
achieved with a good slot utilization. flows, but still well under 400.
shows the overflow probability with different bucket and slot
numbers. It shows that with 2 slots the overflow probability is
very high, making it unacceptable. With 8 slots the overflow
probability is extremely low, however, the hardware support
needed is the highest. The combination of 4 slots and 32k
buckets appears to be a sweet spot. It has a low overflow
probability with the best performance gain in terms of the
use of on-chip memory and hardware support. Therefore, the
bucket number is set to 32k with 4 slots in a bucket.

VI. RESULTS
A. Hash bucket performance

The impact of concurrent flows. To validate our design on
hash buckets, we perform a stress test. We adjust the number of
concurrent flows up to 600k, which is well beyond our assump-
tion of maximum 40k. The portion of heavy hitters is set to 1
over 1,000 flows. Fig. 10 shows that the number of slots in use
increases with the number of concurrent flows and the slots are
almost fully utilized with 200k flows. The overflow probability
is increased from 0.01% to 72.65% as the number of flows
grows from 10k to 600k. Note that there is a sweet region
at the beginning of the curve where the overflow probability
grows slowly while the slot utilization rate increases rapidly.
This fits well with our assumption of maximum 40k flows with
slot utilization at 30.9% and overflow probability at 0.82%. In
addition, the overflow probability is about 30% even when the
number of flows reaches 200k. This means that even at this
scale much greater than the design assumption, our design can
still reduce a large amount of overhead on the interactions
between FPGA and DRAM.

Overflow. In order to show the proportions of the three
interactive methods, we adjust the number of concurrent flows
on the premise that the packet rate is 40k packets per ms.
Fig. 11 shows that as the number of concurrent flows increases
from 801 to 39957, the number of counter overflows decreases
from 40 to 1 while the number of bucket overflows increases
from 2 to 335. This is in line with our expectation that as
the number of flows increases the bandwidth share for each
flow is diluted, resulting in fewer counter overflows but more
hash collisions and thus more bucket overflows. By the nature
of bandwidth sharing, there will not be many heavy hitters.
It is not surprising that the number of counter overflows is
generally low, however the number of bucket overflows may
explode as the number of flows increases. For a periodic
update, as expected a similar number of entries are loaded
to DRAM based on the number of concurrent flows in place

—— Base
—©—- BK-VM
—— ECN

BK-NIC
—— BK-VM&NIC
DCTCP

X86 server
N SmartNIC

80

w
o
S

60

o

Throughput
(Gbps)

40

Rate (Mbps)

2 ||

= N
o o
S S
A g }‘

Packet
rate (Mpps)

o
o

End-to-end
latency (us)

10 15 20
Time (s)

IN)
a
w
S

Fig. 12. Performance: SmartNIC vs Fig. 13. Mice flow data rate. Mice
x86 server. FPGA-based SmartNIC flows benefit from rate-limiting heavy
improves PPS performance 5 times for hitters, but get penalized by DCTCP
heavy hitter detection. for undifferentiated ECN marking.

@* * o
2040 - Dense —%— Loose ‘]‘(
g 220 i
Z1si") 2 Il
[} 10l 3 “ |
g & 10 1 H
o] (A |
05 (4 N\ ||
-6~ Dense %~ Loose —*— Base /A]\ |
0.0 0
5 10 15 20 25 30 0 5 10 15 20 25 30
Time (s) Time (s)

(a) Heavy hitter data rate. (b) Retransmissions.
Fig. 14. CE marking frequency on BK-VM. Loose marking cannot rate-limit

heavy hitters to the desired level. Dense marking can achieve the goal.
(the number of entries is not exactly the same as the number
of flows, because of overflows).

B. Heavy hitter detection ability

Fig. 12 compares the ability to detect heavy hitters between
x86 server and SmartNIC with FPGA acceleration. SmartNIC
increases packet processing rate by five times, throughput by
more than two times and reduces end-to-end packet latency
by more than half. This indicates that FPGA-accelerated
SmartNIC is promising for cloud-scale heavy hitter detection.
After testing in a region for one month, MIMIC detected
several heavy hitters and performed backpressuring. There
were no persistent packet losses observed in the testing.

C. Rate-limiting performance

Mice flow. The per-flow backpressure should only be im-
posed to heavy hitters without penalizing the mice flows from
the other tenants. Fig. 13 compares the data rate of mice flows
between different schemes. The Base scheme has no rate-
limiting applied. It shows that by rate-limiting heavy hitters the
released bandwidth is taken up by the mice flows, resulting
in improved data rate. In contrast, ECN (with CUBIC) and
DCTCP do not differentiate between mice flows and heavy
hitters for CE marking, causing a great deal of penalty on
mice flows. DCTCP has its own ECE marking mechanism
and the corresponding rate adjustment function. This has a
greater impact on mice flows.

Heavy-hitter flow. Fig. 14, 15 and 16 show the rate-limiting
performance between the three proposed schemes (namely,
BK-VM, BK-NIC and BK-VM&NIC) with different CE mark-
ing and notification frequency, loose and dense marking. The
loose marking is set to 1 over 5,000 packets. The dense
marking is set to 1 over 2,000 packets, which gives the desired
transmission rate (§ V-A). In the figures, the Base scheme
has no rate-limiting applied. Fig. 14 shows that with dense
marking BK-VM can rate-limit the selected heavy hitter to
the desired transmission rate with almost no retransmissions.

207 § 3000
2 7]
515 Q\\) @2
8 i £ 2000
210 ;\& < {
8 8% 3 10001 /|

05 4 ié)

—©— Dense —— Loose —*— Base —©— Dense —%— Loose
0.0 0
() 5 10 15 20 25 30 0 5 10 15 20 25 30

Time (s) Time (s)

(a) Heavy hitter data rate. (b) Retransmissions.
Fig. 15. Notification frequency on BK-NIC. Meter tables can rate-limit heavy
hitters to the level as desired. But excessive packet losses may occur.
il

M

bl g
o o
@
o
I=3

o
-

R

Rate (Gbps)
Retransmission
IS
S
IS

iy

—©— Dense —*— Loose

o

o
N
=1
o

—O- Dense > Loose —*— Base J<

o
5]
o

5 10 15 20 25 30 0
Time (s)

10 15 20 25 30
Time (s)

(a) Heavy hitter data rate. (b) Retransmissions.
Fig. 16. CE marking frequency on BK-VM&NIC. Regardless loose or dense
marking the scheme can rate-limit to the desired level. Meter tables kicked
in with loose marking, as it could not rate-limit to the desired level, causing
a large number of packet losses. No packet losses with dense marking.

However, with loose marking the transmission rate is well
above the desired level, persistently stressing on the CPU,
although there are no many retransmissions. BK-NIC leverages
the proposed notification packet to signal CPU overloading.
Triggered by this packet, a meter table is then added to the
SmartNIC on the sender host for rate-limiting the selected
flows to the desired transmission rate. Fig. 15 shows that
the meter table sets the transmission rate at the right level.
However, there are a large number of retransmissions due
to meter table’s packet dropping mechanism. BK-VM&NIC
is conducted not only on the VM but also the SmartNIC.
That is, in addition to the rate-limiting mechanism through
ECN on VM, there is also a meter table on the SmartNIC to
further control the transmission rate if needed. Fig. 16 shows
that the transmission rate is always limited to the right level
regardless CE marking frequency. However, with the right
marking frequency there were no retransmissions observed.
With loose marking, there are some retransmissions but far
below the level of BK-NIC. This is because the meter table
on the SmartNIC does not have to drop as many packet due
to the rate-limiting on VM.

BK-VM is similar to ConQuest [13] and NFVnice [3],
requiring full ECN support. However, the later two use the
standard CE marking while BK-VM can use the proposed
mechanism for selecting CE marking frequency. BK-NIC is
similar to NCF [22] as they both have a mechanism to generate
a notification packet for backpressure. BK-NIC is similar to
NFVnice [3] when its backpressure is done by a NFV manager,
in the sense of dropping packets early.

D. x86 server CPU performance

RTT. Fig. 17 shows the query latency distribution between
different schemes by pinging the corresponding CPU core.
When there is no rate-limiting (Base), the queue in the
middlebox is built up leading to unpredictable long latency.
For BK-VM&NIC and BK-NIC, the latency is well controlled.
The average latency for Base, BK-NIC and BK-VM&NIC are

1.0 50
) ooogPPORTT = ,
0.8 e o %16 —=— Base —e— BK-NIC —— BK-VM&NIC
5
W 06 5§12
a <
©o4 —%— Base g
—o- BK-NIC b
0.2 —*— BKVMANIC| §
3

0.0
02 04 06 08 10 12 14 16
Latency (ms)

Time (s)

Fig. 17. x86 server query RTT. Query Fig. 18. x86 server CPU utilization
latency is well under control by rate- with reaction time. Fast reaction in
limiting heavy hitters. response to CPU overloading.

0.998ms, 0.402ms and 0.286ms, respectively. The “on/off”
bursty nature of meter table tends to create micro queues. As
a result, BK-NIC has a latency greater than BK-VM&NIC.

CPU utilization and reaction time. Fig. 18 shows the CPU
cycles per 20ms interval for packet processing at the NFV node
when CPU utilization exceeds the threshold. There are many
mice flows as background traffic throughout the experiment.
The black arrow points the time when the heavy hitter started.
In the figure, our schemes significantly reduce the number of
cycles. The reaction time is observed from CPU utilization
exceeding the threshold to CPU utilization settling at the right
level. The work in [33] implements heavy-hitter detection and
backpressure in software, which takes nearly 1 minute to take
effect. The reaction time of BK-NIC and BK-VM&NIC are
0.6s and 10ms, respectively, which is much faster than the
software solutions. From our observation it takes about 1ms for
the CPU to get the heavy hitter information, and about 0.3ms
to get the flows selected and transmit the rate-limiting signal.
It is then up to the protocol stack to receive, process and react
to the signal. As a result, BK-VM&NIC reacts promptly and
starts rate-limiting. BK-NIC has a longer reaction time because
of meter table’s rate-limiting mechanism. It takes the meter
table some time to “warm up”, observing the transmission
rate before rate-limiting.

VII. RELATED WORK

Collaborative studies. A lot of efforts have been made to
improve ECN marking at the intermediate nodes [34]-[37] and
the end hosts [38]. These schemes are compatible with our use
of ECN. Our CE marking can take advantage of these schemes
when suitable. ACDCTCP [25] and vCC [26] allow vendors
to enforce an optimized congestion control such as DCTCP
in a transparent way. There is a high level of interference not
suitable for MIMIC (§ III-E). However, if such systems get
deployed, MIMIC may choose a congestion control scheme
favorable for backpressuring.

On heavy-hitter detection, some systems [13], [14], [17]-
[19], [22], [39]-[41] aim to achieve high detection accuracy
with efficient use of on-chip memory. The limited on-chip
memory cannot deal with the amount of cloud traffic, without
losing flow information. With the FPGA-based hierarchical
memory design, MIMIC does not have to trade off between
detection accuracy and memory usage. MIMIC may use these
schemes if memory becomes an issue.

Rate-limiting upon detection. ConQuest [13] detects heavy
hitters based on a short-time window. This may yield very

efficient use of memory at the cost of losing flow information
and mistaking micro-bursts as heavy hitters. ConQuest uses
the standard ECN. This means it will not work on UDP traffic
or in the scenarios where ECN is disabled on either side of the
hosts. ConQuest is similar to BK-VM in our design. NCF [22]
identifies the heavy hitters with count-min sketch and sends
NACKSs to the traffic source of the top-k heavy hitters. Again,
it is an excellent scheme for efficient use of memory which
may result in the losses of flow information. It is not clear
how rate-limiting is carried out in response to NACKs. NCF
is similar to BK-NIC. NFVnice [3] may achieve backpressure
for a service chain through a NFV manager or ECN when
the chain spreads across multiple hosts. In the earlier case, a
packet is dropped early at the beginning of the service chain
to avoid wasting resources later on. Similarly, BK-NIC drops
packets early at the source host. In the later case, NFVnice
is similar to BK-VM, requiring full ECN support. However,
while NFVnice can backpresure a particular flow, it does not
try to identify the heavy hitters.

Alternative approach. The RDMA-based solutions [42]—
[44] represent a different approach without relying on the
existing protocol stack as long as the Ethernet fabric supports
it. It requires a RDMA-capable NIC and its own stack to
ensure high throughput, low latency and lossless transmissions.
This is a direction worth investigation.

PicNIC [16] and EyeQ [15] monitor the receiving rate
of each VM. When the rate exceeds a threshold, they will
backpressure to the source VM with admission control. How-
ever, this cannot guarantee a congestion-free core. In fact,
EyeQ assumes a congestion-free fabric for optimal bandwidth
allocation. The admission control of EyeQ may lead to head-
of-line (HoL) blocking and affect the mice flows by rate-
limiting VM. To tackle the HoL issue and thus allow per-flow
backpressuring, PicNIC needs to enable NAPI-TX and TSQ of
the VM. NDP [45] does not need to perform congestion con-
trol based on the proposed stack modifications. These solutions
are against our goal of being non-invasive, but worth further
investigation. BWE [46] is a global, hierarchical bandwidth
allocation infrastructure. The focus of BWE is on bandwidth
allocation, not directly on backpressuring. However, BWE may
help reduce the chance of congestion at the network core
through accurate network modelling.

VIII. CONCLUSION

We build MIMIC, a cloud-scale flow backpressure system
for production deployment. We extend our existing SmartNIC
to facilitate heavy-hitter detection and per-flow backpres-
suring. MIMIC achieves non-invasive and controllable rate-
limiting through the novel use of ECN and meter tables,
together with TCP congestion control. For heavy hitter detec-
tion, MIMIC adopts a hierarchical memory design with pre-
filtering, which results in no losses of flow information for
improved detection accuracy and enables rapid detection. As a
result, MIMIC can achieve a fast reaction time bringing down
CPU utilization to the normal level without packet losses.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]
[20]

[21]

[22]

(23]

[24]

REFERENCES

Y. Gao, Q. Li, L. Tang, Y. Xi, P. Zhang, W. Peng, B. Li, Y. Wu, S. Liu,
L. Yan et al., “When Cloud Storage Meets RDMA,” in USENIX NSDI
2021, 2021, pp. 519-533.

A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “kvm: the
Linux virtual machine monitor,” in Proceedings of the Linux symposium,
vol. 1, no. 8. Dttawa, Dntorio, Canada, 2007, pp. 225-230.

S. G. Kulkarni, W. Zhang, J. Hwang, S. Rajagopalan, K. Ramakrishnan,
T. Wood, M. Arumaithurai, and X. Fu, “NFVnice: Dynamic backpres-
sure and scheduling for NFV service chains,” IEEE/ACM Transactions
on Networking, vol. 28, no. 2, pp. 639-652, 2020.

“The Current State of NFV Deployment and How It’s Predicted to
Change,” https://www.vitria.com/wp-content/uploads/2019/01/The-Cur
rent- State-of-NFV-Deployment.pdf, 2019.

P. Zheng, A. Narayanan, and Z.-L. Zhang, “A closer look at NFV
execution models,” in Proceedings of the 3rd Asia-Pacific Workshop on
Networking 2019, 2019, pp. 85-91.

S. D. Goglin and L. Cornett, “Flexible and extensible receive side
scaling,” Sep. 1 2009, uS Patent 7,584,286.

T. Pan, N. Yu, C. Jia, J. Pi, L. Xu, Y. Qiao, Z. Li, K. Liu, J. Lu,
J. Lu et al., “Sailfish: accelerating cloud-scale multi-tenant multi-service
gateways with programmable switches,” in Proceedings of the 2021
ACM SIGCOMM Conference, 2021, pp. 194-206.

T. Barbette, G. P. Katsikas, G. Q. Maguire Jr, and D. Kosti¢, “RSS++
load and state-aware receive side scaling,” in Proceedings of the 2019
CONEXT Conference, 2019, pp. 318-333.

“Linux kernel,” https://www.kernel.org/doc/Documentation/networking/
ip-sysctl.txt, Accessed in 2022.

I. Rhee, L. Xu, S. Ha, A. Zimmermann, L. Eggert, and R. Scheffenegger,
“RFC 8312: CUBIC for Fast Long-Distance Networks,” https://datatr
acker.ietf.org/doc/html/rfc8312, 2018.

K. Ramakrishnan, S. Floyd, and D. Black, “RFC 3168: The Addition
of Explicit Congestion Notification (ECN) to IP,” https://datatracker.ie
tf.org/doc/html/rfc3168, 2001.

“OpenFlow Switch Specification,” https://opennetworking.org/wp-con
tent/uploads/2013/04/openflow-spec-v1.3.1.pdf, 2013.

X. Chen, S. L. Feibish, Y. Koral, J. Rexford, O. Rottenstreich, S. A.
Monetti, and T.-Y. Wang, “Fine-grained queue measurement in the data
plane,” in Proceedings of the 2019 CONEXT Conference, 2019, pp. 15—
29.

M. Moshref, M. Yu, R. Govindan, and A. Vahdat, “Dream: dynamic
resource allocation for software-defined measurement,” in Proceedings
of the 2014 ACM SIGCOMM Conference, 2014, pp. 419-430.

V. Jeyakumar, M. Alizadeh, D. Mazieres, B. Prabhakar, A. Greenberg,
and C. Kim, “EyeQ: Practical network performance isolation at the
edge,” in USENIX NSDI 2013, 2013, pp. 297-311.

P. Kumar, N. Dukkipati, N. Lewis, Y. Cui, Y. Wang, C. Li, V. Valancius,
J. Adriaens, S. Gribble, N. Foster et al., “PicNIC: predictable virtualized
NIC,” in Proceedings of the 2019 ACM SIGCOMM Conference, 2019,
pp- 351-366.

V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and
J. Rexford, “Heavy-hitter detection entirely in the data plane,” in
Proceedings of the 2017 SOSR, 2017, pp. 164-176.

Y. Li, R. Miao, C. Kim, and M. Yu, “FlowRadar: A Better NetFlow for
Data Centers,” in USENIX NSDI 2016, 2016, pp. 311-324.

M. Yu, L. Jose, and R. Miao, “Software Defined Traffic Measurement
with OpenSketch,” in USENIX NSDI 2013, 2013, pp. 29-42.

“Source code of tcp_output.c,” https://elixir.bootlin.com/linux/v3.10.
105/source/net/ipv4/tcp_output.c, Accessed in 2022.

K. Chan, R. Sahita, S. Hahn, and K. McCloghrie, “RFC 3317: Differ-
entiated Services Quality of Service Policy Information Base,” https:
//datatracker.ietf.org/doc/html/rfc3317, 2003.

A. Feldmann, B. Chandrasekaran, S. Fathalli, and E. N. Weyulu, “P4-
enabled network-assisted congestion feedback: a case for NACKs,” in
Proceedings of the 2019 Workshop on Buffer Sizing, 2019, pp. 1-7.

L. Kalampoukas, A. Varma, and K. K. Ramakrishnan, “Explicit Window
Adaptation: A Method to Enhance TCP Performance,” IEEE/ACM
Transactions on Networking, vol. 10, no. 3, 2002.

N. Spring, M. Chesire, M. Berryman, V. Sahasranaman, T. Anderson,
and B. Bershad, “Receiver based management of low bandwidth access
links,” in IEEE INFOCOM 2000, 2000, pp. 245-254.

[25]

[26]

[27]

(28]

[29]
[30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

K. He, E. Rozner, K. Agarwal, Y. Gu, W. Felter, J. Carter, and A. Akella,
“AC/DC TCP: Virtual congestion control enforcement for datacenter
networks,” in Proceedings of the 2016 ACM SIGCOMM Conference,
2016, pp. 244-257.

B. Cronkite-Ratcliff, A. Bergman, S. Vargaftik, M. Ravi, N. McKeown,
I. Abraham, and I. Keslassy, “Virtualized congestion control,” in Pro-
ceedings of the 2016 ACM SIGCOMM Conference, 2016, pp. 230-243.
“Understanding Overutilization and Microburst Behavior,”
https://www.gigamon.com/content/dam/resource-library/english/white
-paper/wp-understanding-overutilization-and-microburst-behavior.pdf,
2021.

B. Burres, “Intel’s Hyperscale-Ready Infrastructure Processing Unit
(IPU),” in 2021 IEEE Hot Chips 33 Symposium (HCS). 1EEE, 2021,
pp. 1-18.

“Virtex UltraScale+,” https://www.xilinx.com/products/silicon-devices/f
pga/virtex-ultrascale-plus.html, 2021.

“CS3 Data Structures & Algorithms,” https://opendsa-server.cs.vt.edu/
ODSA/Books/CS3/html/BucketHash.html, 2022.

X. Zxt, Z. Zx, and J. Song, “High-density Multi-tenant Bare-metal Cloud
with Memory Expansion SoC and Power Management,” in 2020 IEEE
Hot Chips 32 Symposium (HCS). 1EEE, 2020, pp. 1-18.

J. Guo, Z. Chang, S. Wang, H. Ding, Y. Feng, L. Mao, and Y. Bao,
“Who limits the resource efficiency of my datacenter: An analysis of
alibaba datacenter traces,” in IEEE/ACM IWQoS 2019. 1IEEE, 2019,
pp. 1-10.

J. Lu, T. Pan, S. He, M. Miao, G. Zhou, Y. Qi, B. Lyu, and S. Zhu,
“A Two-Stage Heavy Hitter Detection System Based on CPU Spikes
at Cloud-Scale Gateways,” in /[EEE ICDCS 2021. IEEE, 2021, pp.
348-358.

W. Bai, L. Chen, K. Chen, and H. Wu, “Enabling ECN in multi-service
multi-queue data centers,” in USENIX NSDI 2016, 2016, pp. 537-549.
J. Zhang, W. Bai, and K. Chen, “Enabling ECN for datacenter networks
with RTT variations,” in Proceedings of the 2019 CONEXT Conference,
2019, pp. 233-245.

H. Wu, J. Ju, G. Lu, C. Guo, Y. Xiong, and Y. Zhang, “Tuning ECN for
data center networks,” in Proceedings of the 2012 CONEXT Conference,
2012, pp. 25-36.

D. Shan and F. Ren, “Improving ECN marking scheme with micro-burst
traffic in data center networks,” in IEEE INFOCOM 2017, 2017, pp. 1-9.
M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data center tcp (dctcp),” in
Proceedings of the 2010 ACM SIGCOMM Conference, 2010, pp. 63-74.
A. Metwally, D. Agrawal, and A. El Abbadi, “Efficient computation of
frequent and top-k elements in data streams,” in International conference
on database theory. Springer, 2005, pp. 398-412.

A. Majidi, N. Jahanbakhsh, X. Gao, J. Zheng, and G. Chen, “DC-ECN:
A machine-learning based dynamic threshold control scheme for ECN
marking in DCN,” Computer Communications, vol. 150, pp. 334-345,
2020.

G. Cormode and S. Muthukrishnan, “An improved data stream summary:
the count-min sketch and its applications,” Journal of Algorithms,
vol. 55, no. 1, pp. 58-75, 2005.

P. Taheri, D. Menikkumbura, E. Vanini, S. Fahmy, P. Eugster, and
T. Edsall, “RoCC: robust congestion control for RDMA,” in Proceedings
of the 2020 CONEXT Conference, 2020, pp. 17-30.

Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang, Z. Cao,
M. Zhang, F. Kelly, M. Alizadeh et al., “HPCC: high precision conges-
tion control,” in Proceedings of the 2019 ACM SIGCOMM Conference,
2019, pp. 44-58.

Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron, J. Padhye,
S. Raindel, M. H. Yahia, and M. Zhang, “Congestion control for large-
scale RDMA deployments,” ACM SIGCOMM Computer Communication
Review, vol. 45, no. 4, pp. 523-536, 2015.

M. Handley, C. Raiciu, A. Agache, A. Voinescu, A. W. Moore, G. An-
tichi, and M. W¢jcik, “Re-architecting datacenter networks and stacks
for low latency and high performance,” in Proceedings of the 2017 ACM
SIGCOMM Conference, 2017, pp. 29-42.

A. Kumar, S. Jain, U. Naik, A. Raghuraman, N. Kasinadhuni, E. C.
Zermeno, C. S. Gunn, J. Ai, B. Carlin, M. Amarandei-Stavila et al.,
“BwE: Flexible, hierarchical bandwidth allocation for WAN distributed
computing,” in Proceedings of the 2015 ACM SIGCOMM Conference,
2015, pp. 1-14.

