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Abstract
Edge clouds are expected to be a key revenue growth driver

for cloud vendors in the next decade; however, simply replicat-

ing the network infrastructure for the public cloud to the edge

experiences deployment issues. At the edge, the challenge for

cloud network design is to deliver the required performance

under the stringent restrictions of hardware budget and de-

ployment footprints, while retaining functionality equivalence.

To this end, we propose LuoShen, a hyper-converged gateway

for multi-tenant multi-service edge clouds by consolidating

the entire cloud network infrastructure into a 2U server switch

with a P4-centric architecture. At the data plane, LuoShen

conducts pipeline folding and fits the original overlay and

underlay devices into the switch pipeline via meticulous on-

chip resource budgeting. At the control plane, LuoShen relies

on BGP peering to ensure inter-component reachability. Lu-

oShen achieves 1.2Tbps throughput and reduces the upfront

cost, deployment size and power usage by 75%, 87%, 60%,

compared with the original cloud network architecture. It has

been deployed in Alibaba Cloud at hundreds of edge sites.

1 Introduction
The past decade has witnessed the rise of the public cloud

to reshape the global IT infrastructure [10]. The success of

the public cloud lies in a win-win economic model: cloud

vendors save money by bulk purchasing computing resources

at lower costs, while cloud customers utilize the shared re-

sources without investing in their own expensive hardware in

a pay-as-you-go manner [28, 32, 49]. Following this model,

we have built 28 public cloud regions globally for worldwide

service coverage [6]. Recently, however, we have seen a surge

in customer requests to provide cloud infrastructure close to

their sites to address evolving needs, such as ultra-low-latency

applications like machine learning inference [56], local data

processing of large volumes of data [52], data residency due

to security or data sovereignty [43] and the cloudification of
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telecom infrastructure [23, 29]. These requirements can cer-

tainly be addressed by on-premises data centers; however, not

everyone can afford to build their own. To meet local process-

ing needs, we start to build edge clouds near our customers

with products like Local Region [2] and Cloud Box [1, 3].

To offer customers the same product experience as provided

by the public cloud and reduce the time-to-market cycle of our

edge clouds, replicating the existing public cloud architecture

to the edge is a wise strategy. In our public cloud, to manage

traffic bursts from various cloud services and accommodate

large forwarding tables due to multi-tenancy, we deploy dif-

ferent roles of gateway clusters for handling different cloud

services [41]. However, when extending such “role-splitting”

gateway architecture to the edge, we’ve encountered several

deployment issues. The first is how to fit the entire network

infrastructure within a constrained space. For example, the

Cloud Box condenses the entire cloud infrastructure into a

42U server cabinet. If the network infrastructure consumes

too much space, there will be little room left for the server

payload, which will reduce the available VMs for sale as well

as the vendor’s revenue. The second is how to save upfront

and operational costs without economies of scale [49]. A typ-

ical public cloud region can have tens of thousands of servers,

thus the costs of the network infrastructure can be spread over

the vast number of servers. However, such economies of scale

diminish in a single edge cloud as the network infrastructure

constitutes a substantial proportion of its upfront cost due to

the much reduced server payload. Moreover, as the number of

edge clouds grows rapidly, such cost inefficiency will be mag-

nified many times. The third is how to provide the required

stable performance in extreme cases. Although the traffic vol-

umes and the table sizes are significantly reduced at the edge,

high-bandwidth traffic and heavy-hitter flows may still occur

in some edge cloud use cases, e.g., high-bandwidth traffic

directed from the local edge cloud to the remote public cloud,

IoT traffic aggregation into a single heavy-hitter flow after

being tunneled. Besides, the cloud network infrastructure in

production should be durable for a longer service time to save

development expenses and adapt to future traffic growth.
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To address the above issues, we propose LuoShen, a hyper-

converged programmable gateway for multi-tenant multi-

service edge clouds, which provides the required performance
under the stringent restrictions of hardware budget and de-
ployment footprints, while retaining functionality equivalence.

Unlike the expensive role-splitting gateway architecture that

uses separate underlay/overlay devices to handle different

cloud services like VM-VM (same VPC), VM-VM (differ-

ent VPC), VM-Cross-region-VM, VM-IDC/IDC-VM, VM-

Internet/Internet-VM and SLB, LuoShen fits the entire cloud

network infrastructure into a 2U server switch with a “P4-
centric” design. That is, all stateless cloud network functions

are converged into the Tofino pipeline, with the remaining

stateful processing handled by the CPU and accelerated by

the FPGA. All traffic will traverse through the Tofino pipeline

before being forwarded to the external networks or distributed

to the CPU/FPGA by the converged underlay devices. At the

data plane, we propose a novel pipeline layout with pipeline

folding and carefully budget the on-chip resources to house

all the major cloud network functions. At the control plane,

we achieve resource isolation, efficient table provisioning and

inter-component BGP peering for coexistence of different

components. To save the development costs, retain the system

stability and shorten the time-to-market cycle, we extensively

reuse mature code from the existing public cloud infrastruc-

ture. LuoShen has been deployed in Alibaba Cloud for over

two years at hundreds of edge sites. We share the experiences

and lessons from its development and deployment.

Our major contributions are summarized as follows.

• LuoShen is the world’s first hyper-converged gateway

disclosed for multi-tenant multi-service edge clouds. It

follows a p4-centric architecture and achieves a good bal-

ance of performance, costs and deployment footprints.

• At the data plane, we propose techniques such as pipeline

folding, pipe/table bypass, on-chip resource budgeting

to maximize the table convergence density in the Tofino.

• At the control plane, we reserve multiple configuration

channels, and conduct BGP peering with hot standby for

inter-component reachability and high availability.

• LuoShen achieves 1.2Tbps throughput and reduces the

upfront cost, deployment size and power usage by 75%,

87%, 60%, compared with the role-splitting architecture.

2 Background and Motivation
In this section, we introduce the cloud network infrastructure

in Alibaba Cloud over the years, followed by the issues we’ve

encountered when mirroring the infrastructure at edge clouds.

2.1 VPC Network Infrastructure
Virtual private clouds in the public cloud. The public cloud

vendors serve a massive number of tenants with a shared

infrastructure, where tenant isolation is essential to ensure that

their resources are segregated and secure, e.g., one tenant’s

traffic should be invisible to any other tenant [40]. In addition,

some tenants own lots of VMs distributed worldwide but still

want to manage them in a unified network address space. To

this end, the cloud vendors are expected to virtualize a flat

address space for each tenant, hiding the physical network

intricacies [26]. To satisfy the isolation and virtualization

needs, virtual private clouds (VPCs) [55] are created in the

public cloud. The VPC multiplexes the underlying resources

and offers a logically isolated address space, and each VPC

is uniquely identified by its VNI. Today, overlay protocols,

such as VXLAN [37], NVGRE [24], GENEVE [27], are used

for VPC implementation. They leverage tunneling to stretch

virtualized networks over an underlying L3 network within

or across geo-distributed data centers.

Networking requirements of VPCs. A tenant’s VMs need

to cooperate for delivering scalable cloud services and this

produces the VM-to-VM traffic. These VMs can reside in

one VPC as the simplest deployment case. They can also

reside in multiple VPCs within the same region as some

tenants wish to isolate different parts of their infrastructure

into different VPCs for more precise access control. A tenant’s

VPCs can even reside in multiple regions as top tenants deploy

VMs across geo-distributed data centers for global service

delivery. To this end, the cloud vendors need to address the

communication requirements between VMs in the same VPC,

in different VPCs within the same region, and across regions.

For enterprise customers who use public cloud resources, the

connectivity between their on-premises data centers (IDCs)

and their VPCs needs to be established. For cloud services

through the Internet, to allow Internet traffic to enter into

VPCs and vice versa, the connectivity between the Internet

and the selected VPCs is also needed. Besides, to handle the

massive scale and rapid growth of cloud traffic, either from the

Internet (north-south traffic) or from within the data centers

(east-west traffic), horizontal scaling of VMs is required and

the incoming traffic needs to be directed to the load balancers

first, before reaching the backend VMs [18, 39, 42, 57].

Roles of gateways/load balancers in the VPC network. As

mentioned, traffic and address space isolation is achieved by

assigning one or more VPCs to each tenant, where traffic is

isolated within a VPC by default, unless the routes to the ex-

ternal networks are explicitly added to the cloud gateway [31]

at the VPC border. Therefore, the first role of a gateway is

to route outbound traffic from the local VPC to the external

networks and vice versa. To achieve this, the gateway will

query its routing table with the VNI of the local VPC and the

destination VM IP as the key to obtain the VNI of the next-

hop VPC/tunnel if the external network is another virtual net-

work. Besides, traffic will be forwarded across the underlying

physical network when being tunneled between two adjacent

virtual network devices (e.g., vSwitch [44] or cloud gateway).

Therefore, the second role of a gateway is a virtual tunnel

endpoint (VTEP), where the outer header encapsulation or

decapsulation is conducted when relaying traffic onto or off a

physical network domain. When tunneling a packet from the

local gateway to a remote VTEP across a physical network,
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Table 1: Major cloud services and the corresponding traffic

routes in Alibaba Cloud’s VPC network infrastructure.

Cloud services Traffic routes
VM-VM (same VPC) VM-vSwitch-VGW-vSwitch-VM

VM-VM (different VPCs) VM-vSwitch-VGW-vSwitch-VM
VM-Cross-region-VM VM-vSwitch-TGW-Cross-region-TGW-vSwitch-VM

VM-IDC VM-vSwitch-TGW-CSW-IDC
IDC-VM IDC-CSW-TGW-vSwitch-VM

VM-Internet VM-vSwitch-IGW-Internet
Internet-VM Internet-IGW-vSwitch-VM

Internet-LB-Service Internet-IGW-SLB-vSwitch-VM
VM-LB-Service VM-vSwitch-VGW-SLB-vSwitch-VM

the outer SIP will be the gateway’s physical IP, the outer DIP

will be the remote VTEP’s physical IP, and the VNI of the

tunnel will also be encapsulated. Furthermore, as most legacy

IDCs are non-virtualized (e.g., bare-metal servers) [11, 58],

protocol translation is needed for connecting IDCs and VPCs.

Similarly, address translation is also required when the gate-

way provides external connectivity to the Internet. For traffic

to be load balanced, it will be delivered to the gateway first,

then the gateway will route the traffic to the load balancer.

For a better understanding of our design, we elaborate on our

gateway’s different use cases (see Table 1) as follows.

1©VM-VM (same VPC): If two VMs are in the same VPC,

inter-VM traffic will first query the VXLAN routing table,

confirming that the destination VM is in the local VPC. Then,

traffic will be forwarded to the physical server hosting the

destination VM with the server IP obtained by querying the

VM-NC mapping table using the local VNI and the VM IP.

2©VM-VM (different VPCs): If two VMs are in different

VPCs within the same region, inter-VM traffic will query the

VXLAN routing table twice. In the first pass, we will obtain

the VNI of the VPC containing the destination VM. In the

second pass, we use the obtained VNI to query the routing

table again and the remaining procedure is the same with 1©.

3©VM-Cross-region-VM: For cross-region VM communi-

cation, traffic from the source VM will first query the VXLAN

routing table at the local gateway to obtain the VNI of the

cross-region tunnel and the physical IP of the remote gate-

way. After that, traffic will be tunneled to the remote gateway,

where its VXLAN routing table will be queried for the VNI

of the remote VPC containing the destination VM. The re-

maining procedure is the same with the second pass of 2©.

4©VM-IDC: For communication between a virtual network

and a non-virtualized network, a specialized device is placed

at the border of the public cloud to decapsulate the packets

from the virtual network and make the VXLAN-to-VLAN

translation if needed. On receiving the outbound traffic from

VMs to IDCs, the gateway will first query the VXLAN routing

table to tunnel the traffic to the specialized device.

5©IDC-VM: For inbound traffic from IDCs to the public

cloud, the specialized device at the border of the cloud will

encapsulate the incoming packets with VXLAN headers and

then tunnel them to the gateway of the destination VM. The

remaining procedure is the same with 2©.

6©VM-Internet: The VMs in the cloud use private ad-

dresses while accessing the Internet needs public addresses.

Therefore, the outbound traffic to the Internet needs to query

the SNAT table (key: VM IP, value: EIP) at the local gateway

to obtain the public address EIP. Then, the gateway will re-

place the VM IP (i.e., inner SIP) with the EIP and decapsulate

the tunnel header before sending the traffic to the Internet.

7©Internet-VM: The inbound traffic from the Internet will

be tunneled to the VM via the gateway. The tunnel encapsu-

lation requires the destination VM IP, the VNI of the VPC

containing the VM and the physical address of the server host-

ing the VM, which can be obtained by querying the DNAT

table at the gateway using the EIP (i.e., DIP of the packet).

8©Internet-LB-Service: Traffic to be load balanced will first

hit the gateway before reaching the load balancer. For traffic

from the Internet, it will query the DNAT table at the gateway

and then be encapsulated and tunneled to the load balancer.

9©VM-LB-Service: For traffic from the VMs in the cloud

(e.g., to use database hosted on servers behind a load balancer),

it will query the VXLAN routing table and VM-NC mapping

table at the gateway and then be tunneled to the load balancer.

Alibaba Cloud’s solution for scalable VPC networking.
The challenges of building a scalable VPC network infrastruc-

ture lie in many aspects. In a typical cloud region, there are

tens of thousands of servers, equipped with 25G/100G NICs,

contributing to dozens of Tbps traffic to the gateway. The gate-

way contains several major tables including the VXLAN rout-

ing table, the VM-NC mapping table and the SNAT/DNAT

table. In our cloud region, there are O(1M) VPCs and O(1M)

VMs, leading to a very large VXLAN routing table, VM-NC

mapping table and SNAT/DNAT table. Fitting these tables

into an x86 server may not be a serious problem; however,

if you want to make hardware acceleration to combat the

rapid growth of cloud traffic, the hardware’s on-chip memory

can easily be exhausted [41]. In Alibaba Cloud, we adopt a

centralized gateway model that the traffic from the source

VM will first be tunneled from its vSwitch to the gateway,

where the next-hop forwarding decision will be made. That

is, the gateway needs to handle all kinds of traffic as listed in

Table 1, leading to a sophisticated packet processing pipeline

under ultra-high traffic rates. Moreover, as traffic volumes and

cloud services change rapidly, the infrastructure needs to be

elastic and flexible. Finally, as the central hub of east-west

and north-south traffic, the stability of the gateway is equally

important as its performance since failures of the gateway will

affect a wide range of tenants and their services. To address

these challenges, we have the following architectural designs.

The first design is separation of underlay and overlay net-
work devices. Fig. 1 shows the VPC network infrastructure

in Alibaba Cloud. There are underlay devices such as SW,

LSW, BSW and overlay devices such as vSwitch, SLB and

gateways (vendor-specific acronyms are defined in Table A1

in §D). The underlay devices provide underlying network con-

nectivity on top of which overlay tunnels are built. The traffic

through the overlay tunnels carried by the underlay devices

includes 1©east-west traffic between VMs within a region (via
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Figure 1: In Alibaba Cloud, different roles of gateway clusters

are deployed to forward traffic of different cloud services.

SW); 2©traffic routed to the gateways/SLB (via SW, BSW and

LSW); 3©traffic routed to the external networks (e.g., Internet,

via LSW and BSW). The overlay devices provide tenant isola-

tion, virtual routing/forwarding, and tunnel encap/decap. The

separation of the underlay and overlay enables rapid cloud

service iteration. When cloud services need a change, we only

need to update the overlay devices without reconstructing the

underlay infrastructure. Besides, caching VM-to-VM routes

at vSwitches enables bypassing overlay gateways for faster

routing directly through the scalable underlay SW fabric [54].

The second design is deploying different roles of gateway
clusters for different cloud services. To handle cloud-scale

traffic and huge forwarding tables caused by multi-tenancy,

the logically centralized gateway is further split into multiple

gateway clusters, each dealing with a particular cloud service.

For example, VGW handles VM-to-VM traffic within a region,

TGW handles VM-to-VM traffic across regions as well as traf-

fic between VMs and IDCs, IGW handles Internet traffic, SLB
is for server load balancing, CSW is a specialized device for

VXLAN-to-VLAN translation and vice versa, XGW holds all

the gateway tables for fallback traffic processing. In the early

days, all gateways are based on x86 servers and clustered for

scalable performance. To prevent CPU overload due to traf-

fic bursts, some gateways are accelerated via programmable

switches [41]. To increase elasticity and flexibility, some state-

ful gateways, such as NAT and VPN, reside on servers in the

form of NFV instances [47]. All the gateways will advertise

their VIPs to the underlay network and the vSwitch will tun-

nel the VM traffic to different gateways by encapsulating the

traffic with different outer DIPs based on the VNIs and the in-

ner DIPs. Table 1 shows some major cloud services and their

corresponding traffic routes. In the “role-splitting” gateway

architecture, failures will be isolated within a single gateway

cluster. If horizontal splitting of tenants [41] is enabled, fail-

ures will be further isolated within a single physical gateway

in the cluster. Similarly, the development, deployment and

update of different gateway clusters can also be decoupled.

2.2 Rise of Edge Clouds
Extending public cloud services to the edge. Alibaba Cloud

has built 28 public cloud regions across the globe. However,

we are increasingly requested by more and more customers

to provide cloud infrastructure close to their locations for the

following use cases. The first is ultra-low-latency applications

such as cloud gaming, live streaming, manufacturing control

and machine learning inference [56], which cannot afford the

large latencies of task processing in the remote cloud. The

second is local data processing needs for large volumes of

data generated at the edge, e.g., data uploaded by IoT nodes,

which can save network bandwidth usage between the edge

and the remote cloud. The third is data residency needs due

to security or data sovereignty [43], e.g., financial services.

Another potential market is the cloudification of telecom in-

frastructure, e.g., cloud-native 5G core and RAN [23, 34]. To

meet the above needs, we replicate our public cloud infrastruc-

ture to the edge, expecting to continue its past success. In this

way, there is no need for our customers to build and operate

their own on-premises IDCs and they can use the same tools

and APIs that they use in the public cloud to manage their

edge clouds. Specifically, we have launched two edge cloud

products, namely, Local Region [2] and Cloud Box [1,3]. The

Local Region is a local public cloud infrastructure serving

nearby customers in the same city while the Cloud Box is a

highly-converged public cloud infrastructure within a 42U

server cabinet. They both offer a user experience akin to the

public cloud but with significantly reduced capacities, e.g.,
a Local Region usually has dozens of servers, and a Cloud

Box contains even fewer. As a comparison, our largest public

cloud region houses hundreds of thousands of servers.

Deployment constraints of edge clouds. When extending

the VPC network infrastructure to the edge, we’ve experi-

enced the following deployment issues. 1© Fitting the entire
public cloud into limited space. Edge clouds have small foot-

prints but full functionality of the public cloud. For example,

for Cloud Box, the entire cloud infrastructure (including com-

pute, storage, network, power supply, cooling system) will be

packed into a 42U server cabinet, leaving limited space to ac-

commodate servers running tenants’ VMs. In addition, if the

network occupies too much cabinet space, the server payload

will be further compacted, which reduces the available VMs

for sale as well as the cloud vendor’s revenue. If we pack the

9 different types of underlay and overlay devices (as shown

in Fig. 1) with 1:1 backup into the 42U cabinet, there will be

little room left for the server payload. 2© Cost disadvantages
without economies of scale. In a public cloud region, the VPC

network infrastructure consists of a few clusters of underlay

and overlay devices, serving tens of thousands of servers. The

upfront and operational costs of the VPC network infrastruc-

ture can be spread over the huge number of servers due to the

economies of scale [49]. However, for a single edge cloud,

the situation has changed as the network infrastructure will

occupy a significant proportion of its upfront cost due to the

much reduced server payload. Moreover, the “role-splitting”

architecture is not conducive to operational cost reduction.

Last but not least, as the edge clouds are placed near the cus-

tomer sites, they will have a huge site number compared with

the public clouds. For example, Alibaba Cloud now has only
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28 public cloud regions but the number of edge clouds grows

rapidly. That is, the cost inefficiency of the original VPC net-

work architecture in a single edge cloud will be magnified

thousands of times when edge clouds become more popular.

Possible solutions and their limitations. The traffic load is

significantly reduced at the edge due to the fewer tenants

served. Therefore, the 3-tier switch fabric for underlay traffic

processing can be simplified and the role-splitting gateway

clusters for overlay traffic handling are indeed overkill. Ac-

cordingly, in our first generation of edge cloud products, we

simply use a few ToR switches for the underlay and a few

x86 server-based gateways and load balancers for the overlay.

Specifically, for the Local Region, we use separate x86 servers

to build XGW and SLB. As the XGW holds all the gateway

tables, it can easily replace all the single-role gateways, signif-

icantly saving the upfront and operational costs as well as the

deployment footprints. For the Cloud Box, to maximally save

the cabinet space, we further converge the XGW and the SLB

into a single x86 server, using different groups of CPU cores

to perform different tasks. To handle potential traffic growth

in the future, horizontal scaling [41, 50] is still leveraged.

Although extensive horizontal scaling will cause cost inef-

ficiency and large deployment footprints of the VPC network

infrastructure, we believe this will not happen soon at the edge.

However, two real edge cloud use cases change our minds.

The first is about the high-bandwidth requirement at the edge.

In this case, our customer expects to migrate his data from the

local IDC to the remote public cloud through the nearest point

of presence (PoP). However, the nearest PoP is in another city

hundreds of miles away from the customer IDC and a leased

line from an ISP is needed for the IDC-PoP connection. To

save expenses and time, our customer decides to route his

data to the public cloud directly through the Local Region in

his city, which produces hundreds of Gbps traffic and floods

the XGWs in the Local Region. The second is about CPU

overload by a heavy-hitter flow. In this case, our customer

uses the Cloud Box to manage his IoT devices. The data col-

lected by the IoT devices is sent through a tunnel to the Cloud

Box. The tunnel aggregates the traffic into a single flow that

reaches dozens of Gbps. At the XGW, the heavy-hitter flow

is hashed to a CPU core via the RSS mechanism [25], which

easily overloads the CPU core and causes packet drops.

3 LuoShen’s Architecture
In this section, we list the design goals of LuoShen, followed

by its architectural innovation to achieve these goals.

3.1 Design Goals
1©Small deployment footprints. The VPC network infrastruc-

ture at the edge should have small footprints to leave more

room for the server payload, maximizing the VM capacity.
2©Complete VPC network functions. At the edge, our cus-

tomers want ultra-low latency but do not want to compromise

the consistent product experience of the public cloud. The

VPC network inside the 42U server cabinet needs to provide

the same functions as provided by the public cloud.

3©Cost efficiency. Considering the large edge cloud number,

the upfront and operational costs of the network infrastructure

in each edge cloud should be controlled. Besides, network

architectures with smaller energy footprints are preferred.

4©Performance stability. In a multi-tenant cloud, failures

of the shared network infrastructure will affect a large number

of tenants. As the gateway is the central hub of the cloud

traffic, its performance stability needs to be strengthened to

avoid being overloaded by either high-bandwidth traffic or

heavy-hitter flows. Once a failure occurs, traffic should be

taken over by the backup component as soon as possible.

5©Elasticity and flexibility. Different edge cloud use cases

have different network customization needs in terms of traffic

scale and network functionality, so the edge cloud network

infrastructure should be elastic and programmable to quickly

respond to the changing service requirements.

6©Avoid reinventing the wheel. We have invested tremen-

dous person-months into developing the network infrastruc-

ture for the public cloud. The stability of the system has stood

the test of time. As the edge clouds inherit all the functions of

the public cloud, to save the development costs, retain the sys-

tem stability and shorten the time-to-market cycle, we’d better

reuse as much code as possible from the existing systems.

3.2 Hyper-Converged Gateway
Opportunities for infrastructure convergence. Pro-

grammable switches [15, 16] have been proved to work

well even under cloud-scale traffic bursts [41]. They are

suitable for stateless forwarding which covers a majority of

cloud gateway functions. However, some cloud services are

stateful (e.g., SLB, NAT) and better to be processed by the

CPU due to the large memory footprints as well as the high

processing complexity. To deal with high-bandwidth traffic,

the stateful processing can also be offloaded to the FPGA. In

the following, we discuss how to converge the core functions

of the VPC network infrastructure into a Tofino chip [5] and

how to converge the remaining functions into the CPU with

high-performance functions accelerated by the FPGA.

1©Converge different gateway functions sharing the same
table. As you may notice in §2.1, many gateway functions in

our cloud share the same forwarding tables, e.g., the VXLAN

routing table is involved in all gateway functions except

Internet-related services. Hence, we can converge these func-

tions from different gateways into the same Tofino pipeline

stages. Actually, in past deployments, we have already made

efforts in this direction, e.g., VGW handles VM-VM (same

VPC), VM-VM (different VPCs) and VM-LB-Service traffic

within a region and TGW handles all the cross-region traffic

between two VMs and between VMs and IDCs. Actually,

VGW and TGW also share the VXLAN routing table, that is,

they can be further converged into a single gateway. Besides,

given that Tofino is programmable, we can also converge the

VXLAN-to-VLAN translation function into it, saving space

originally for CSW. Finally, in the Tofino, we converge VGW,

TGW and CSW into a converged gateway called CGW .
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2©Converge different gateway functions without table over-
lapping. In edge clouds, the gateways serve tenants a few

miles away, so there is a significant reduction in the number

of table entries compared to the public cloud. As a result, it is

possible to converge different gateway functions into the same

Tofino chip even though their tables have no overlap. Specif-

ically, we can place different functions in different pipeline

stages. Packets will be sequentially processed by each func-

tion when they traverse through the pipeline. In this way, we

can further converge CGW and IGW into the Tofino chip.

3©Converge underlay and overlay devices. After we con-

verge overlay devices (i.e., CGW, IGW) into the Tofino, there

are still many standalone underlay devices such as SW (for

switching east-west traffic), LSW (for routing traffic to gate-

ways) and BSW (for connecting Internet/remote regions),

which need additional costs as well as space for placement.

Given that Tofino has ultra-high throughput, if its on-chip

resources are still available, we can further converge the un-

derlay devices together with the overlay devices into the same

gateway. Specifically, we converge the original SW and LSW

into a new SW, which is further converged with the CGW and

IGW into the Tofino (BSW is still standalone). In this way,

one Tofino handles both overlay and underlay traffic.

4©Process fallback traffic and stateful forwarding at the
CPU. The P4 switch pipeline cannot handle all types of cloud

traffic. Some traffic needs fallback processing. For example,

the VM-to-VM route caching at vSwitches requires special

treatment of the first packet of the VM-to-VM traffic within a

region. If a packet from a VM cannot hit the route cache at the

vSwitch, it will be forwarded to the gateway [54]. After query-

ing the VM-NC mapping table at the gateway, a reply packet

containing the mapping relationship will be constructed and

sent back to the vSwitch for route cache population. However,

the reply packet construction is a bit complicated for the P4

pipeline and better to leave to the CPU. Besides, some cloud

services (e.g., NAT, VPN) require stateful processing at the

gateway with large session tables. These tables are too large

to fit into the Tofino and better to use CPU to process them.

5©Offload high-bandwidth stateful forwarding to the
FPGA. Although we can use kernel-bypass techniques (e.g.,
DPDK) [13] to accelerate CPU-based stateful packet process-

ing, for some stateful cloud services, high-bandwidth traffic

can easily overload a CPU core [36, 41, 48]. One example is

east-west traffic load balancing. Sometimes, a massive num-

ber of VMs want to access the cloud service hosted on a server

cluster behind a load balancer. The load balancer may face

huge traffic pressure since the east-west traffic in a data center

is usually not rate-limited. As a comparison, the Internet-

related and cross-region traffic are often rate-limited based

on tenants’ spending. To handle high-bandwidth stateful for-

warding, we can use FPGA with large HBM to meet both

search speed and memory capacity requirements [57].

The server-switch hardware. According to the above infras-

tructure convergence principles, we build LuoShen, a hyper-

Figure 2: LuoShen fits the entire VPC network infrastructure

into a 2U server switch with full functionality retained.

converged programmable gateway for multi-tenant multi-

service edge clouds. LuoShen fits the entire VPC network

infrastructure into SNA [8], a 2U server switch developed by

Alibaba Cloud’s infrastructure team, with full public cloud

network functionality retained. Inside LuoShen, the original

single-role gateways (including VGW, TGW, CSW, IGW) and

the underlay devices (including SW and LSW) are converged

into a Tofino chip, handling both overlay and underlay traf-

fic; the XGW and SLB are converged into a CPU, handling

fallback traffic and conducting traffic load balancing, respec-

tively; the SLB+ in an FPGA conducts traffic load balancing

hardware acceleration. LuoShen essentially follows a “P4-

centric” architecture inherited from our centralized gateway

model in the public cloud (§2.1), because most of the gateway

functions are now converged into the P4 switch pipeline. In

the public cloud, the cloud gateways are the central hub of

the east-west and north-south traffic. Now, for edge clouds,

the Tofino in LuoShen becomes the new central hub of the

edge cloud traffic. In LuoShen, the 64×100G ports of Tofino

are split into different purposes. Some ports directly connect

to servers to receive VM traffic, some ports connect to BSW

for Internet access and cross-region communication, some

ports connect to on-premise IDCs, and some ports connect to

the CPU and FPGA for fallback and stateful traffic process-

ing (the CPU sits on a NIC for hardware offloading/traffic

rate-limiting, while the FPGA is plugable so that we can also

select other cards for fast adapting to the diverse edge cloud

service needs). Besides, a large number of ports that are not

shown explicitly in Fig. 2 are used internally for pipeline

folding [41], which will be detailed in 4.1. As a comparison,

in the public cloud, all ports of the P4-accelerated gateways

are connected to the upstream switches (i.e., LSW). Since

we converge the 8 standalone overlay and underlay devices

into a 2U box, LuoShen has superior advantages in terms

of deployment footprints, upfront and operational costs, and

power consumption for edge cloud deployment.

Functionality equivalence analysis. To provide tenants with

the same product experience as that of the public cloud,

we need to achieve functionality equivalence after conver-

gence. We compare the two architectures before and af-

ter convergence (Fig. 1 and Fig. 2). First, all the gate-

ways/SLB functionality is retained because VGW, TGW,

CSW, IGW are now in the P4 pipeline while XGW and

SLB are now in the CPU/FPGA. Second, the functionality

of east-west traffic switching as well as traffic routing to
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Figure 3: Packet journeys of three different cloud services converge at LuoShen.

gateways/SLB/Internet/IDCs/remote regions provided by the

original underlay device SW and LSW is also retained after

they are converged into the new SW in LuoShen. Specifically,

the original SW needs to route the VM traffic to the gate-

ways/SLB through LSW, however, this function is no longer

needed since physical servers are now directly connected with

LuoShen. It also needs to switch the east-west traffic which

hits the route cache at vSwitches and this function is still re-

tained at the new SW. The original LSW needs to route traffic

to gateways/SLB/Internet/IDCs/remote regions. Since VGW,

TGW, CSW, IGW are now in the Tofino which is directly

connected with physical servers, there is no need to explic-

itly route traffic to these gateways. However, the function to

route traffic to XGW/SLB/Internet/IDCs/remote regions of

the original LSW is still retained at the new SW, which will

forward the corresponding traffic through the P4 switch ports

to these external destinations outside the Tofino.

To summarize, in LuoShen’s P4-centric architecture, the

core functions of the VPC network infrastructure are of-

floaded to the P4 pipeline. All incoming traffic will go through

CGW, IGW and the new SW sequentially in the pipeline be-

fore being distributed to CPU/FPGA or external networks by

the SW. Since all traffic experiences the “distribute after deep

pipelining” packet flow, the P4 pipeline becomes the traffic

aggregation point. Thus, the traffic of different cloud services

will be queuing together in the pipeline. However, there is no

need to worry about it at present as the high-capacity pipeline

is sufficient to accommodate the traffic from the edge.

Packet journeys in LuoShen. Fig. 3 shows the packet jour-

neys of three different cloud services converging at LuoShen.

The first is VM-to-VM traffic across VPCs within a region,

where the outer IP is set to CGW VIP by the vSwitch due

to a route cache miss. Then, the packet will be routed to the

CGW in LuoShen and query the VXLAN routing table and

VM-NC mapping table to obtain the VNI of the destination

VPC as well as the server IP of the destination VM. Finally,

the packet will query the FIB in SW and be forwarded to

the destination VM. The second is VM traffic load balancing

for accessing the cloud service behind SLB, which is more

complicated as the Tofino needs to interact with the SLB+ in

the external FPGA (we use FPGA for SLB acceleration). The

packet containing VIP 1 (i.e., the IP of the cloud service) as

the inner DIP will be routed to CGW in LuoShen to query the

VXLAN routing table and VM-NC mapping table to obtain

the VIP of SLB+. After that, the packet will be forwarded by

SW to the SLB+, where server load balancing is performed

by querying a session table to find the real server (identified

by RSIP 1 and 10.1.4.11 in Fig. 3) using the 5-tuple. Then,

the packet will be reencapsulated with the real server address

as the inner/outer DIP and routed back to the Tofino (because

the FPGA has no other connection to the network). Finally,

the packet will be forwarded by SW to the selected real server

behind SLB+. The third is Internet traffic load balancing for

accessing the cloud service behind SLB. The packet flow is

almost the same with the second case, except that the traffic

from the Internet will be routed to IGW first to query the

DNAT table using the DIP to obtain the VIP of SLB, and the

server load balancing is performed in the CPU this time.

4 Data Plane
In this section, we show how to fit the core functions of the

VPC network infrastructure into a single Tofino chip through

sophisticated pipeline layout and on-chip memory budgeting.

4.1 Tofino Pipeline Layout
Pipeline folding for CGW/IGW/SW convergence. The

Tofino has 4 pipelines and each pipeline consists of an ingress

pipe and an egress pipe, connected by a traffic manager

(TM). Each pipeline has limited SRAM/TCAM memory re-

sources [30], distributed equally in 12 stages of that pipeline.

Each pipeline stage is shared by the ingress pipe and the egress

pipe, e.g., if we fit a large table into stage 0 of the ingress

pipe, there will be little space left for stage 0 of the egress

pipe. When converging the core functions of the VPC network

into the Tofino, we should first evaluate if the stage/memory

resources are sufficient to hold the deep pipeline of CGW,

IGW, and SW. Actually, in our P4-based single-role gateways

for the public cloud [41], the stage/memory occupancy of

some major tables, such as the VM-NC mapping table, has

already exceeded the resources of a single pipeline. Besides,

other tables, such as SNAT/DNAT table for Internet access

and meter tables for rate-limiting, will also have large memory

footprints. Although the table sizes will shrink at the edge, a

single Tofino pipeline still cannot hold all the converged core

functions of the VPC network.
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(a) LuoShen’s pipeline layout. (b) Another layout option.

Figure 4: Two optional ways of pipeline folding.

To this end, we conduct pipeline folding to assemble the

four independent pipelines into a 48-stage deep pipeline for

CGW/IGW/SW convergence (as shown in Fig. 4a). The traffic

of different cloud services will sequentially traverse through

the deep pipeline and be processed at the corresponding stages.

For example, the VM-VM (same VPC) traffic will go through

Ingress Pipe 0, Egress Pipe 1, Ingress Pipe 1, Egress Pipe

3, Ingress Pipe 3, and Egress Pipe 0, while the Internet-VM

traffic will go through Ingress Pipe 0, Egress Pipe 1, Ingress

Pipe 1, Egress Pipe 2, Ingress Pipe 2, Egress Pipe 3, Ingress

Pipe 3, and Egress Pipe 0. Notice that there is one explicit pipe

branch at Ingress Pipe 1 with either Egress Pipe 2 or Egress

Pipe 3 as the next-hop pipe to separately process Internet-VM

or VM-Internet traffic. There is also an inexplicit pipe brach at

Ingress Pipe 0 (not shown in Fig. 4a) with either Egress Pipe

1 or Ingress Pipe 0 itself as the next-hop pipe as some cloud

services need to query the VXLAN routing table twice (e.g.,
VM-to-VM traffic across VPCs). Last but not least, as the FIB

in SW is embedded in Ingress Pipe 3, it will select the next-

hop ports from Egress Pipe 0 according to the FIB lookup

results (the 16 ports of Egress Pipe 0 are connected to the

external destinations outside the Tofino such as XGW/SLB

in CPU, SLB+ in FPGA, physical servers, Internet/remote

regions through BSW, and on-premises IDCs).

Major tables in the pipeline. We show how the major tables

of CGW, IGW and SW are distributed in the pipeline.

1©CGW (Fig. 5a): CGW contains all the major tables of

VGW, TGW and CSW. As the VXLAN routing table and

the VM-NC mapping table are the two largest, we separate

them into different pipes. To determine whether an incom-

ing packet will be processed locally or bypass the current

pipe, we place a CGW Classify at the front of Ingress Pipe

0. In this way, Internet traffic will directly bypass CGW

(we detail the bypass logic later). The packet flows of dif-

ferent cloud services related to CGW are listed as follows.

VM-VM (same VPC): CGW Classify->VXLAN Routing-

>VM-NC Mapping; VM-VM (across VPCs, same region):

CGW Classify->VXLAN Routing(resubmit)->VM-NC Map-

ping; VM-Cross-region-VM (sender): CGW Classify-

>VXLAN Routing(resubmit)->Next-Hop; VM-Cross-region-

VM (receiver): CGW Classify->VXLAN Routing(resubmit)-

>VM-NC Mapping; VM-IDC: CGW Classify->VXLAN

Routing(resubmit)->Next-Hop->Egress VBR(VXLAN-to-

VLAN); IDC-VM: CGW Classify->Ingress VBR(VLAN-

to-VXLAN)->VXLAN Routing(resubmit)->VM-NC Map-

ping. Notice that we use Ingress/Egress VBR for VLAN-to-

(a) CGW’s forwarding logic.

(b) IGW’s forwarding logic.

(c) SW’s forwarding logic.

Figure 5: Distribution of major tables in the pipeline.

VXLAN translation and vice versa to deal with IDC traffic.

Besides, we use Next-Hop to obtain the physical address of

the remote device in either VM-Cross-region-VM (sender) or

VM-IDC case. Finally, the resubmit ability of Tofino enables

circular lookups of the VXLAN routing table in several cases.

2©IGW (Fig. 5b): IGW contains SNAT for VM-Internet

traffic and DNAT for Internet-VM traffic, as well as their

rate-limiting tables (i.e., Meter Out and Meter In). The packet

flows are: VM-Internet: IGW Classify->SNAT->Meter Out;

Internet-VM: IGW Classify->DNAT->Meter In. Similar to

CGW Classify, IGW Classify is used to filter the traffic

that should be processed locally. Besides, it will also decide

whether the traffic should be sent to SNAT or DNAT accord-

ing to packet header fields. Notice that Meter In occupies the

entire pipe while Meter Out shares its pipe with the SNAT ta-

ble. The reason is that, most rate-limiters for the VM-Internet

direction are installed at vSwitches while all rate-limiters for

the opposite direction are installed at the gateway, so that

Meter Out is much smaller than Meter In at the gateway.

3©SW (Fig. 5c): SW is responsible for underlay traffic for-

warding according to the outer DIP. The possible destinations

can be XGW/SLB in CPU, SLB+ in FPGA, physical servers,

Internet/remote regions through BSW, and IDCs. SW con-

ducts FIB lookup at Ingress Pipe 3 to select the next hop and

then rewrites the MAC headers at Egress Pipe 0.

Pipe/table bypass logic. Although each packet will sequen-

tially pass through CGW, IGW and SW, not all tables have

to be queried, e.g., Internet traffic will go through the CGW

pipes but there is no need to query the VXLAN routing table.

Hence, we can make an early judgment to determine whether

the packet will be processed by the local pipe or even the lo-

cal table to reduce unnecessary processing overhead. Usually,

the judgment is placed at the front of a pipe, e.g., in CGW

Classify, we set flags in the metadata according to the VNI

and DIP in the packet header to classify traffic into different

cloud services and the flags can be carried by the metadata

across pipeline stages. Fig. 6 shows the P4 code framework

884    21st USENIX Symposium on Networked Systems Design and Implementation USENIX Association



1 struct metadata_t {
2 bit<1> flag; /* whether to bypass the current pipe */
3 bit<4> subflag; /* whether to bypass the current table */
4 ...
5 }
6 control Ingress( ... ) {
7 action tb1_ac1() { flag = 0; }
8 action tb1_ac2() { flag = 1; subflag = 0; }
9 action tb1_ac3() { flag = 1; subflag = 1; }

10 ...
11 table tb1 {
12 /* to distinguish different cloud services */
13 key = { ... }
14 /* to take different bypass actions */
15 actions = {
16 tb1_ac1; /* bypass the current pipe */
17 tb1_ac2; /* enter the current pipe, query tb2 */
18 tb1_ac3; /* enter the current pipe, query tb3 */
19 ... } }
20 table tb2 { ... }
21 table tb3 { ... }
22 ...
23 apply {
24 tb1.apply();
25 if (flag == 1) {
26 if (subflag == 0) { tb2.apply(); }
27 else if (subflag == 1) { tb3.apply(); }
28 ...
29 }
30 ... /* flag is 0, bypass the current pipe */
31 } }

Figure 6: P4 code framework for pipe/table bypass.

for pipe/table bypass. Specifically, we use flag for pipe bypass

and subflag for table bypass in the local pipe. For components

that span across multiple pipes (e.g., IGW), we can place

separate judgment logic at the front of each pipe, or let the

judgment results from the first pipe pass down to the subse-

quent pipes. The former consumes additional stage occupancy

while the latter increases metadata bridge usage [41].

Rationale behind pipeline design.
1©Two optional ways of pipeline folding. In designing the

pipeline layout, we have also considered another option in

Fig. 4b, which has separate pipelines folded for CGW and

IGW, achieving 3.2Tbps total bandwidth. However, it has

limitations: (1) Traffic balance is hard to achieve between

two pipelines. (2) Table occupancy balance is also hard to

guarantee between two pipelines. (3) Although more ports are

exposed to servers, there is also tight coupling between the

cloud services and the ports, which adds constraints for server

placement. (4) Our selected pipeline layout maximally reuses

the existing code by porting the entire IGW codebase from the

existing P4-based IGW gateway [41] for rapid deployment.

2©Component sequence in the pipeline. Someone may won-

der why the sequence is CGW->IGW->SW. In fact, we can

place either CGW or IGW in the front. However, the overlay

devices (CGW and IGW) must be placed ahead of the under-

lay device (SW) because the gateway always conducts outer

IP modification based on the VNI and the inner IP first (e.g.,
via VXLAN route lookup), then uses the outer DIP to query

the FIB in SW to determine the next-hop forwarding port.

3©Next-hop selection at the ingress pipe. You may no-

tice that all next-hop selection happens at the ingress pipe

(e.g., VXLAN routing table resubmit at Ingress Pipe 0,

SNAT/DNAT selection at Ingress Pipe 1, FIB lookup in SW

at Ingress Pipe 3). This is because we must rely on the TM of

Tofino for packet switching and it is necessary to determine

where the packet will go before it is sent to the TM.

4©Performance issue and the coping strategy. The current

pipeline layout also has limitations: (1) The original 4 parallel

pipelines are folded into one, decreasing the bandwidth from

6.4Tbps to 1.6Tbps. As 4 ports are connected with the CPU

and FPGA, the actual gateway bandwidth is only 1.2Tbps. (2)

Lots of Tofino ports are used for internal loopback, thereby

greatly reducing the number of ports for connecting physical

servers. However, for edge clouds, as the 1.2Tbps throughput

is more than enough and the server payload in a Cloud Box is

restricted, the above-mentioned will no longer be a problem.

In real deployment, hot standby is leveraged which doubles

the available gateway bandwidth as well as server payload.

4.2 On-Chip Resource Budgeting
As Tofino has scarce SRAM/TCAM, pipeline stages, and PHV

resources, we need to carefully budget the on-chip resource

occupancy to fit multiple gateway functions into the chip.

Table placement for balanced resource occupancy. In Lu-

oShen, forwarding tables are distributed in the 8 cascaded

pipes based on the service logic as well as balanced pipeline

resource occupancy. As mentioned in 4.1, the SRAM/TCAM

memories in each pipeline stage are shared by the ingress pipe

and the egress pipe. That is, for each pipeline, we can have

different resource occupancy combinations like ingress-heavy,

egress-heavy or balanced, but we can never have ingress-

heavy and egress-heavy simultaneously. When fitting the

tables into the Tofino, we also follow this principle to bal-

ance the resource occupancy of the 4 pipelines. For exam-

ple, Pipeline 0 is ingress-heavy as its ingress pipe stores the

VXLAN routing table, therefore, its egress pipe can only store

very small tables for MAC rewrite. Similarly, Pipeline 1 is

egress-heavy due to the VM-NC mapping table at Egress Pipe

1, Pipeline 2 is balanced because its ingress pipe has Meter

In while its egress pipe has DNAT, Pipeline 3 is egress-heavy

due to the SNAT and Meter Out at its egress pipe.

Stage occupancy compression. After pipeline folding, all

tables of the cascaded CGW/IGW/SW are fit in the 48 stages.

The stages are consumed mainly in two ways: (1) table de-

pendency, (2) large table occupancy. The table dependency

means the packet processing behavior of the current stage

depends on the table lookup results of the previous stage, e.g.,
CGW Classify occupies the first stage of Pipeline 0 to set by-

pass flags for subsequent stages. Clearly, in a hyper-converged

gateway, table dependencies occur more often. The large table

occupancy means the large table that cannot be fit in one stage

will span across multiple stages. In LuoShen, for (1), we rely

on the P4 compiler to generate the dependency graph; for (2),

we shrink some large tables (e.g., the VM-NC mapping table)

to reduce their stage occupancy for edge clouds.

PHV usage optimizations. PHV is a set of containers that

carry the headers and metadata along the pipeline. The first

PHV optimization is to reduce the metadata bridging as much

as possible by meticulous table placement because metadata

bridging not only decreases the switching throughput through

the TM [41] but also consumes more PHV resources at both
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Figure 7: Multi-component table configuration channels.

ingress pipe and egress pipe. The second PHV optimization

is to overlay two or more header/metadata fields in the same

PHV container if their lifetimes do not intersect by using the

pa_alias pragma to instruct the compiler. Moreover, we break

the large header/metadata field into smaller pieces of the same

size intentionally to increase the possibility of PHV sharing.

5 Control Plane
Resource isolation. Multiple components run on LuoShen’s

CPU. They are (1) DPDK-based forwarding instances such

as XGW and SLB, (2) control plane agents of the data plane

components in Tofino (CGW/IGW/SW), FPGA (SLB+) and

CPU (XGW/SLB). Although the underlying CPU resources

are shared, these components have different performance re-

quirements (e.g., line-rate forwarding) and do not want to be

interrupted by others. To achieve performance isolation, we

dockerize [38] these components and bind XGW and SLB to

dedicated CPU cores. As the number of CPU cores is limited,

we also allow components (e.g., CGW and IGW agents) to

share the CPU cores while using cgroups [46] for resource

isolation. Except for CPU, resource isolation for memory/disk

is also needed to contain memory leaks and core dump files.

Multi-component table configuration. Unlike the single-

role gateways, LuoShen converges multiple components in

its data plane, thereby requiring multiple table configuration

channels (Fig. 7). For each channel, a control plane agent

at the CPU receives table update requests pushed from its

remote controller and installs them into the corresponding

data plane component through the underlying interface (e.g.,
BF Runtime). For rapid deployment of LuoShen, we reuse

the agent code directly from the single-role gateway so that

the remote controller can talk directly to LuoShen without

any modification (e.g., in Fig. 7, the IGW controller controls

LuoShen and IGW). The channels to Tofino, FPGA and CPU

are physically isolated to avoid table configuration collisions.

For the Tofino, the channel to CGW/IGW and the channel to

SW are also separate (i.e., through RPC and SAI). Although

CGW and IGW share the same channel, the complete sepa-

ration of their tables in the Tofino pipeline makes their table

configuration entirely lockless. Besides, to speed up table

configuration, we use batch to assemble multiple table update

requests and issue them in one shot to the BF Runtime.

Inter-component BGP peering. LuoShen converges the

role-splitting VPC network infrastructure of the public cloud

into one device, where internal components still need to com-

municate with each other (e.g., SW needs to route traffic to

the next-hop components). To exchange the reachability in-

formation between components, we set up BGP speakers at

the control plane for inter-component BGP peering so that a

component can learn the routes to others and it can also adver-

tise its reachability to others. Specifically, we set up separate

BGP speakers for XGW, SLB, SLB+ with both learning and

advertising capabilities. For CGW, IGW, SW, we set up one

BGP speaker for all of them. For CGW and IGW, as there

is only one path in the pipeline, there is no need for them to

learn BGP routes and their agents only perform advertising.

For SW, as it is the final component in the pipeline, its control

plane only needs to learn the routes for next-hop selection.

With BGP peering, LuoShen achieves high availability based

on component-level ECMP load balancing and fast failure

recovery, which are discussed in §A due to page limitation.

6 LuoShen’s Performance
We illustrate LuoShen’s performance under pressure test and

in production. The pressure test topology is shown in §B.

On-chip memory occupancy. Fig. 8 shows the memory us-

age in ingress/egress pipes. Generally, LuoShen consumes

more SRAM than TCAM because most major tables (e.g.,
VM-NC, SNAT/DNAT, meters, counters) are based on ex-

act match. Besides, as the Tofino contains more SRAM than

TCAM, we use ALPM [51] to reduce the TCAM usage at the

cost of additional SRAM usage [41]. Except for the VXLAN

routing table, Classify tables, ACLs, and FIB in SW will also

consume TCAM. Fig. 9 and Fig. 10 show how we achieve

balanced pipeline resource occupancy via meticulous table

placement. For Pipeline 0, we place the VXLAN routing table

in the later stages in the ingress pipe as it has dependencies

with the tables in its front (e.g., CGW Classify). As each

stage is shared by the ingress and egress, we have to place

the tables for MAC rewrite in the early stages in the egress

pipe for balanced memory usage. For Pipeline 2, the pipeline

resources are shared in a good balance by the ingress (Meter

In) and egress (DNAT). Fig. 11 shows the memory usage of

CGW/IGW/SW. The SRAM/TCAM occupancy is exactly as

expected. However, even in a hyper-converged gateway, the

memories are not fully exhausted. The reason is that table

dependencies make stages exhausted earlier than memories.

Fig. 12 shows the maximum PHV usage in different pipelines.

After PHV optimizations, the PHV has not been exhausted

in all pipelines. Pipeline 2 has the lowest PHV usage since it

contains only two major tables (i.e., DNAT and Meter In).

Performance under pressure test. Fig. 13 shows table con-

figuration speedup via batching. As CGW and IGW share

the same download channel, the improved table configuration

efficiency will not only reduce the gateway’s cold start time

but also alleviate download channel congestion. Fig. 14 shows

the throughput and latency of the VM-to-VM traffic within

the same VPC. LuoShen can achieve 1.2Tbps line-rate for-

warding with 256B packets and the latency is bounded within
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Figure 8: SRAM/TCAM usage

in ingress/egress pipes.

Figure 9: SRAM usage distri-

bution over stages (Pipeline 0).

Figure 10: SRAM usage distri-

bution over stages (Pipeline 1).

Figure 11: SRAM/TCAM us-

age of CGW/IGW/SW.

Figure 12: PHV usage in differ-

ent pipelines (the worst case).

Figure 13: Table configura-

tion speedup via batching.

Figure 14: Throughput/latency of

VM-to-VM traffic (same VPC).

Figure 15: Latency of different

traffic routes (512B packets).

5μs even with 9000B packets. Fig. 15 shows the latency of

different cloud traffic routes with 512B packet size. The traffic

of VM-VM (same VPC) and VM-Internet has the lowest la-

tency due to the shortest route inside the Tofino (only through

6 pipes) without a resubmit at Ingress Pipe 0. The traffic of

cross-VPC, cross-region and IDC has a slightly higher latency

due to the resubmit operation. The traffic of Internet-VM has

an even higher latency due to its longer route through 8 pipes.

The traffic of the remaining cloud services will be routed to

the external CPU and FPGA, producing the longest latency.

Fig. 16 shows the throughput of different cloud traffic routes

with 512B packet size. The traffic traversing through the ex-

ternal CPU and FPGA has the lowest throughput, exactly as

expected. However, we notice that the traffic of VM-IDC and

VM-Internet also has slightly reduced throughput. The reason

is that they both experience decapsulation of outer headers.

Performance in production. Fig. 17 shows the converged

traffic throughput at an edge site, which is around 50Gbps.

As edge clouds have just been rolled out, most edge sites do

not have heavy traffic. However, we still select the P4-centric

architecture as it not only addresses the extreme cases but also

reserves a large performance margin for future traffic growth,

which makes the architecture durable. Fig. 18 shows the traffic

throughput of different cloud services of the edge site. It

can be inferred that most edge cloud traffic is IDC/Internet-

related. Most of the VM-to-VM traffic within the same VPC

is shortcut by the underlay network due to route caching.

Cross-VPC traffic is currently very limited. Fig. 19 shows the

CPU utilization of different components. SLB has the highest

CPU usage as a data plane function. The control plane agents

of CGW/IGW/SW also consume considerable CPU time.

Advantages of LuoShen at the edge. We compare LuoShen

with the role-splitting gateway architecture in the public cloud

in upfront cost, deployment size and power consumption. We

assume that the gateway/load balancer/switch clusters in the

public cloud will be reduced to separate devices in edge clouds

with one device for each role. Table 2 shows that LuoShen

reduces the upfront cost, deployment footprints and power

Table 2: LuoShen vs role-spliting in cost, size and power.
Cost (unit) Size (U) Power (W)

LuoShen 15 2 ∼1000
Role-splitting 61 15 >2500

consumption by 75%, 87% and 60%, respectively. Due to

page limitation, we discuss the calculation in §C.

7 Experiences and Lessons
Step-by-step deployment. To decompose the complexity

from infrastructure convergence, we deploy LuoShen in a step-

by-step way in production. We deploy the components in the

Tofino first since CGW and IGW cover the majority of cloud

network functions while SW provides the next-hop selection

ability. XGW/SLB/SLB+ are implemented by reusing the

existing x86 devices in the public cloud. As CGW/IGW/SW

are highly coupled, we have to deploy them together in one

pass. After they become more stable, we start to add XGW,

SLB and SLB+ one by one for complete deployment.

Function upgrade. As Tofino, CPU and FPGA are physically

separated, they can be upgraded independently. By contrast, as

CGW, IGW and SW are highly coupled, we have to upgrade

them as a whole, which will involve cross-team collaboration

as they are managed by different teams. The function isolation

issue in Tofino has also been discussed in [19, 53]. In 2018,

Barefoot announced Tofino Fast Refresh [14] to address the

hot upgrade issue. The feature can reset an entire P4 pipeline

within 50ms. However, as LuoShen deeply relies on pipeline

folding with one component spanning across pipelines and

two components possibly sharing the same pipeline, simply

using Tofino Fast Refresh for component upgrade may have

consistency issues. For example, when CGW resets Pipeline

0 and Pipeline 1 for an upgrade, the state of SW and IGW

in the same two pipelines will disappear for a short time and

their table query/update requests on the fly will be discarded.

Capacity expansion. The gateway capacity expansion in-

cludes the upgrade of performance and table size. For perfor-

mance, CPU is more likely to become the system bottleneck.

Some of the solutions we’ve tried include (1) adjusting the

number of CPU cores used by different services, (2) migrating

workloads from LuoShen to external x86 servers, (3) horizon-
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Figure 16: Throughput of differ-

ent traffic routes (512B packets).

Figure 17: Converged traffic

throughput at an edge site.

Figure 18: Traffic throughput

of different cloud services.

Figure 19: CPU utilization of

different components.

tal scaling with more LuoShen gateways. In real deployment,

we prefer (3) for stability and ease of maintenance. For table

size, we borrow the horizontal table splitting technique from

Sailfish [41] to share large tables among more gateways.

Failure isolation. In the public cloud, different gateway clus-

ters are physically separated. In each cluster, tenants’ entries

are horizontally split into multiple gateways. Therefore, fail-

ures will be isolated within a gateway. However, as each

gateway is associated with a huge number of tenants, the blast

radius of a failure will still be large. In edge clouds, LuoShen

serves all tenants miles away. That is, the failure of LuoShen

will affect all tenants at the edge site, although the number will

not be so large. In the Tofino, as CGW/IGW/SW are cascaded

in a folded pipeline, the stability of each component is critical

and we reuse the mature code from the single-role gateways.

At the CPU, we rely on docker and cgroup for failure isolation.

Finally, hot standby is our last resort to guarantee a failsafe.

Telemetry and debugging. As packet flows of different cloud

services converge at LuoShen, for network-wide telemetry, we

should probe all traffic routes in the gateway [59]. To achieve

this, we generate probes with pre-defined header fields for

all cloud service coverage. For network anomaly debugging,

we need to pinpoint the exact anomaly locations. To achieve

this, we collect and export telemetry data to the CPU at each

component/pipe/stage along the anomaly forwarding path.

Elastic NFV deployment. For LuoShen, if we deploy NFV

instances in its CPU, the elasticity will be restricted as the

CPU has already been excessively used (with XGW, SLB and

control plane agents). But, if we deploy NFV instances in

x86 servers, the CPU cores for tenants’ VMs will be occupied

(some tenants are concerned about this as the server payload

is valuable at the edge). We develop an NFV framework that

can autoscale across LuoShen’s boundary by horizontally ex-

panding table entries onto x86 servers during peak workloads.

8 Related Work
Building hybrid CPU/ASIC/FPGA network systems is a com-

mon tactic [9,11,35,41,57] to combat traffic growth that goes

far beyond Moore’s law [45]. However, few systems succeed

in fitting the entire multi-tenant cloud network infrastructure

with multi-service packet flows into a 2U box deployed in

production. For example, ServerSwitch [35] takes advantage

of both commodity servers and switching ASICs to perform

flexible and performant underlay traffic processing in DCNs.

Tiara [57] proposes a hardware-accelerated L4 load balancer

with a 3-tier architecture of P4/FPGA/CPU. While Tiara fits

the SLB function for the public cloud into a 5U box, Lu-

oShen fits the entire VPC network infrastructure (including

SLB) into a 2U box tailored for edge clouds. Sailfish [41]

uses Tofino to accelerate the single-role cloud gateways (e.g.,
VGW). While Sailfish and LuoShen both use pipeline folding

to provide sufficient stage resources, LuoShen considers ad-

ditional constraints. In addition to fitting table entries within

Tofino, it must also consolidate multi-service packet flows,

achieve equivalent implementation of underlay/overlay de-

vices, expose ports to interact with external CPU/FPGA, and

maximize codebase reuse. Bluebird [11] uses Tofino to accel-

erate the bare-metal cloud services which have similar packet

flows with our VM-IDC, IDC-VM scenarios with VXLAN-

to-VLAN translation and vice versa. Comparatively, LuoShen

is an “all-in-one” gateway with a more sophisticated pipeline

layout to consolidate almost all cloud network functions.

Different from our centralized gateway model, other cloud

vendors distribute the VPC network functions to end-

hosts [12, 17, 20–22, 31, 33]. For example, VFP [21] installs

virtual routing, tunnel encap/decap, and load balancing into

a host stack, which is scalable and fault-tolerant as there is

no single point of failure. The host stack performance can

further be accelerated by SmartNICs [22] or by a remote DPU

pool [12] to deal with high-bandwidth traffic bursts. Such dis-

tributed cloud network architecture could also be a good fit for

edge clouds. Considering the consistency with our existing

infrastructure, LuoShen takes an alternative approach with

different design tradeoffs. It offloads almost all VPC network

functions to the gateway to maximally free up valuable CPU

cores for tenants’ VMs. SmartNIC acceleration is not neces-

sary which saves upfront cost. The IDC/cross-region traffic is

also handled by the same gateway which saves cost and space.

To address single point of failure, LuoShen relies on Tofino

to absorb traffic bursts and reuses mature code for stability.

Some vendors build white box server switches without ser-

vice logic (e.g., Accton’s CSP-7551 [4]). LuoShen’s idea can

be extended to them to build other hyper-converged systems.

9 Conclusion
We propose LuoShen, a hyper-converged gateway for edge

clouds, which fits the entire VPC network infrastructure of

the public cloud into a 2U server switch with a P4-centric

architecture. To adapt to the new design constraints of perfor-

mance, costs and deployment footprints, we rearchitect the

data plane and control plane. LuoShen has been deployed in

Alibaba Cloud for over two years at hundreds of edge sites.
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Appendices
A High Availability with Hot Standby
In a production environment, we deploy at least two LuoShen

gateways in a hot-standby mode to achieve high availability,

as shown in Fig. A1. The same components of the two Lu-

oShen gateways will advertise the same VIP to the outside so

that the upstream switches/routers can conduct ECMP load

balancing to split the incoming traffic equally between the

two components. With such design, we can easily scale out

our gateway system to handle the edge cloud traffic growth in

the future. For example, in Fig. A1, two CGW components

advertise the same VIP to the upstream BSW, which will

conduct ECMP load balancing on the traffic towards CGW.

Except for traffic load balancing, the same components of the

two LuoShen gateways can also back up for each other for

fast failure recovery. For example, in Fig. A1, two IGW com-

ponents advertise the same VIP to the upstream BSW, which

will conduct ECMP load balancing on the traffic towards IGW.

However, at a certain time, if there is a link or component

failure of the IGW in one gateway, it will trigger BGP route

withdrawal in the upstream BSW. After that, traffic will be

forwarded by the upstream BSW to the remaining IGW. Ac-

cording to our measurement, the BGP route withdrawal will

be quickly completed in milliseconds during a link failure.

Figure A1: In production, LuoShen achieves load balancing

and high availability with hot-standby deployment.

B Performance Test Topology
In order to pressure test LuoShen’s performance, we build

a test topology as shown in Fig. A2. As mentioned in §4.1,

the Tofino chip in LuoShen only exposes the 16 ports of its

Pipeline 0 after pipeline folding and 4 of them are connected

with the CPU and FPGA. Therefore, we use a traffic generator

to inject 1.2Tbps traffic through 12 optical fibers into the re-

maining 12×100G ports. By changing the traffic header fields

(e.g., VNI, DIP), we can conduct pressure tests on different

traffic routes inside LuoShen for different cloud services.

C Calculation of Cost, Size and Power
When deploying the role-splitting gateway architecture of the

public cloud at the edge, due to the reduced traffic volumes at

the edge, we reduce the original role-based clusters of devices

Figure A2: Performance test topology.

to multiple devices accordingly, with one device for a partic-

ular cloud function. In this way, we will have a device list

including an x86 server attached with an FPGA (2U) to imple-

ment SLB+, two x86 servers (2*2U) to implement XGW and

SLB, three P4-based gateways (3*2U) to implement VGW,

IGW and TGW, three switches (3*1U) to implement CSW,

LSW and the original SW. Then, we calculate the cost, size

and power of LuoShen and the role-splitting architecture, re-

spectively. 1© Upfront cost: As the exact cost numbers of

FPGA, x86 server, P4-based gateway and LuoShen are con-

fidential, we normalize them to 1:10:10:15 according to our

experience (for the sake of simplicity, we omit the cost of

switches). Accordingly, the cost of LuoShen is 15 while the

cost of the role-splitting is (1+10)+2*10+3*10=61. 2© De-

ployment footprints: LuoShen will occupy 2U while the role-

splitting will occupy 2U+2*2U+3*2U+3*1U=15U. 3© Power

consumption: Generally, an FPGA consumes 100W [11, 57],

an x86 server consumes 500W [57] and its CPU consumes

200W [7], a P4-based gateway consumes 300W [39]. There-

fore, the power consumption of the role-splitting architec-

ture is at least (100W+500W)+2*500W+3*300W=2500W

(we still omit the power consumption of switches). LuoShen

contains one P4 switch, two CPUs and one FPGA. Besides,

the optical modules, fans, disks will additionally consume

around 200W. Therefore, the power consumption of LuoShen

is around 300W+2*200W+100W+200W=1000W.

D Acronym Definition

Table A1: Definition of vendor-specific acronyms.
Acronym Expansion

SLB Server Load Balancer
XGW eXtendable Gateway
IGW Internet Gateway
VGW Virtual Private Gateway
TGW Transit Gateway
CGW Cloud Gateway

vSwitch Virtual Switch
NC Node Controller
SW Switch

CSW Customer Switch
LSW Integrated Access Switch
BSW Border Switch
IDC Internet Data Center
VBR Virtual Border Router
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