
INT-filter: Mitigating Data Collection Overhead for
High-Resolution In-band Network Telemetry

Enge Song∗, Tian Pan∗†, Chenhao Jia∗, Wendi Cao‡, Jiao Zhang∗, Tao Huang∗, Yunjie Liu∗
∗State Key Laboratory of Networking and Switching Technology, BUPT, Beijing 100876, China

†Purple Mountain Laboratories, Nanjing 211111, China ‡Peking University, Beijing 100871, China
∗{songenge, pan, 564822241, jiaozhang, htao, liuyj}@bupt.edu.cn ‡caowendi@pku.edu.cn

Abstract—In-band Network Telemetry (INT) enables fine-
grained network monitoring to ease the management of large-
scale networks, which, however, relies on the real-time collection
of a huge amount of telemetry data through the southbound
interface. For example, the INT telemetry data upload rate
of a 28-pod FatTree topology reaches 3Tbps under a probe
frequency of 100 times/s, which is rather unacceptable since
the controller-switch link bandwidth is limited. To mitigate the
telemetry data collection overhead, in this work, we propose INT-
filter, a novel measurement architecture that deploys the same
prediction algorithm on both the data plane and the control
plane to predict the traffic state in the near future instead of
uploading all the telemetry data. Such prediction-based approach
leverages the observation that there is considerable redundancy in
the telemetry data sequence. In addition, we design an integration
mechanism that conducts predictions using multiple methods
simultaneously and uploads the predicted result from the least-
error method to further decrease the upload volume. Extensive
evaluation suggests that INT-filter can achieve at least 33.6% data
collection decrease under a 10ms probe interval. With prediction
integration, the upload reduction can further reach 58.5%.

I. INTRODUCTION

At present, conducting fine-grained, network-wide traffic
monitoring plays an increasingly significant role in maintain-
ing large-scale computer networks [1]. It enables fine-grained
network-wide visibility, allowing the fast detection and local-
ization of network gray failures [2, 3]. It also helps improve the
network traffic load balancing with the prior knowledge of link
congestion [4]. The network-wide traffic monitoring can be
well applied to all types of networks, especially the data center
networks, where traffic is highly aggregated and dynamic, with
occasional and silent network failures, while user perception of
network latency is expected to be persistently guaranteed [5].
With high-resolution network-wide telemetry, any port failure
or traffic choke point can be spotted immediately before taking
rapid response measures.

In traditional network monitoring, management protocols,
such as SNMP [6], are coarse-grained and involve a large
device query latency due to the frequent interactions between
the control plane and the data plane of each underlying
network device. To ameliorate the performance issue, In-
band Network Telemetry (INT) [7] is proposed to achieve

This work is supported by the National Key Research and Development
Program of China (No. 2019YFB1802600), the National Natural Science
Foundation of China (NSFC) (No. 61702049), and the Fundamental Research
Funds for the Central Universities. Corresponding author: Tian Pan.

fine-grained monitoring. INT allows packets to query device-
internal states, such as queue depth and queuing latency, when
they pass through the data plane pipeline, without requiring
additional intervention from the control plane CPU. At the
last hop of the path, the packet containing the end-to-end
monitoring data will be uploaded to a remote controller for fur-
ther data analysis. The ability to arbitrarily write device states
into probe packet headers in INT is essentially supported by
the protocol-independent forwarding architecture, i.e., P4 [8].
Compared to SNMP, INT interacts with the controller only at
the last hop of the monitoring path, thereby reducing a large
amount of device interruption on the controller. The “in-band”
state collection paradigm also allows INT to achieve high-
resolution network monitoring with a high probe frequency,
which is extremely helpful when monitoring microbursts in
data center networks [9].

As a device-level primitive, INT simply defines the interac-
tion between the device-internal states and the incoming query
packets, which is, however, insufficient for completely moni-
toring every link of the network graph. Further orchestration
on INT to generate multiple monitoring paths to cover the
entire network is essential for network-wide telemetry. For
example, HULA [4] adopts the ToR switches to pour INT
probes into the multi-root topology to achieve measurement
coverage. INT-path [10] collects the network topology and
uses an algorithm based on Euler trail to generate non-
overlapped probing paths covering the whole network with
a minimum number of paths. For either method, at the last
hop of each monitoring path, the INT telemetry data needs to
be uploaded to the controller through the southbound interface
for analysis, the bandwidth of which, however, is not limitless.
For high-resolution monitoring (i.e., high probe frequency) at
mega-scale network topology (i.e., more probing paths), the
southbound bandwidth occupation by the INT telemetry data
will become much graver. In addition, the southbound interface
is also at the service of other functions such as Packet-In
messages and flow entry insertions [11], which need sufficient
bandwidth as well. Since both HULA and INT-path upload all
the telemetry data directly to the controller, according to our
measurement and analysis in §II, HULA’s upload rate even
reaches 3.03Tbps under a massive-scale data center FatTree
topology, which is a quite terrible number for the bandwidth
occupation of probe packets. Moreover, the upload rate of INT-
path also reaches 702Mbps despite its path optimization.

To tackle the above-mentioned problems, in this work, we
propose INT-filter, which aims to decrease the southbound
bandwidth occupation for high-resolution In-band Network
Telemetry. Unlike previous work [10] to minimize the probing
path number, INT-filter is designed to reduce unnecessary
uploaded INT telemetry data via conducting historical data-
based prediction. Such design relies on our observation that
the most common device states, such as queue depth, do
not always change drastically or irregularly during a short
period of time, which can be well predicted with some linear
or nonlinear regression methods according to a window of
historical data. Specifically, we deploy the same prediction
algorithm on the data plane device (the data plane device can
be either a switch in the DCN or a router in the WAN) and
on the controller to predict current values of the device states
based on historical data. If there is minor difference between
the current value and the predicted value at the data plane,
the data plane will notify the controller to use the predicted
value at the controller side by uploading a 1-bit notification
flag. Compared with the 32-Byte INT telemetry data, the 1-bit
flag greatly mitigates the uploaded data volume. In essence,
INT-filter can well co-work with other methods [10, 12–
14] to reduce the bandwidth overhead of INT telemetry data
collection by filtering out the redundant collected data. Fur-
thermore, we introduce an prediction integration mechanism
that uses the first-, second-, and third-order polynomial fitting
for prediction, and uploads the least-error method to the
controller. With prediction integration, the reduction of upload
rate further increases from 33.6% to 58.5%.

The main contributions are summarized as follows:

• We investigate the southbound bandwidth overhead of
collecting INT telemetry data using HULA and INT-
path, two existing network-wide telemetry proposals, in a
data center FatTree topology of different scales. Via both
measurement and theoretical analysis, we have come to
the conclusion that without dedicated optimization mea-
sures, the southbound interface bandwidth cannot meet
the needs of high-resolution telemetry data collection.

• We propose INT-filter, which enables the data plane to
opportunistically upload only a 1-bit flag instead of the
32-Byte INT telemetry data via prediction, thus depleting
unnecessary uploads as well as the southbound bandwidth
occupation. We design the packet format for INT collec-
tion and INT upload and use software P4 switches [15] to
implement an INT-filter prototype, which is open sourced
at out git repository [16]. Extensive evaluation indicates
that INT-filter can achieve 58.5% data collection decrease
under a probe interval of 100 times per second.

• In order to further improve the prediction accuracy,
we proposed prediction integration with simultaneous
employment of first-, second-, and third-order polyno-
mial fitting. With different methods dedicatedly handling
different types of data, the prediction accuracy is well
improved and the uploads are further decreased.

�� �� �� �� 	�
� �� �� �
�" �����$�"%�����#�

�

�

�

�

�
!�
 �

��
"�
$�
���

�!
#�

����!�$�
����

Fig. 1. Upload rates under different
probe intervals (INT-path vs. HULA).

� �
 � �� �� �� �
 �� �� �� �� �
 ��
�����#��� ��

�
	��

����
�	��
����
�	��
����

�
��

��
��

 �
"�

��
��

!�

256kbps 702Mbps

������"�
����

Fig. 2. Upload rates under different
network sizes of FatTree topology.

II. TELEMETRY DATA COLLECTION OVERHEAD

In order to obtain real-time device-internal states, INT probe
packets are injected into the network and collected through the
southbound interface. These probes will occupy the network
bandwidth of not only the data plane, but also the interaction
channel between the data plane and the central controller. The
upload rates of INT-path [10] and HULA [4], two network-
wide telemetry approaches built upon INT, are measured and
analyzed at different probe frequencies as well as different
topological scales for understanding the impact in depth.

Impact of the probe interval. Fig. 1 shows the upload
rates of INT-path and HULA under different probe intervals
in a small FatTree [17] topology (the same as the topology
in the HULA paper [4]). HULA’s basic idea is that the ToR
switches will broadcast probes for link state detection. Such
mechanism will cause multiple probes of a switch port in
a short period time, although the most common link state
does not change much in such a short time (such as queue
depth), i.e., conducting redundant probing. In contrast, with
INT-path, we can calculate eight distinct paths that can probe
all ports without redundancy, i.e., no probing path overlapping.
As shown in Fig. 1, HULA’s probe upload rate maximally
reaches 9.07Mbps while its upload rate decreases with the
increase of the probe interval. In contrast, the upload rate
of INT-path is around 0.4Mbps. We can draw a conclusion
that for a small-scale topology, the non-redundant probing is
practicable by drastically reducing the bandwidth occupation
of the southbound interface. But in the face of today’s mega-
scale data center topologies, will such mechanism still work?

Impact of the topological scale. We theoretically analyze
the upload rates of a k-ary FatTree as introduced in [17]. The k
indicates its pod number, and each pod contains two layers of
k/2 switches. We assume that each switch in the lowest layer
is directly connected with k/2 hosts. We calculate that the
total number of hosts (i.e., odd vertices in the graph) is k3/4.
Therefore, there are k3/4 non-overlapped directed probing
paths obtained through INT-path [10]. The probe frequency is
fixed to 100 times per second. The size of the INT telemetry
data for each hop is 32B. According to INT-path, each host
sends a probe packet to another host that is not in the same
pod, and the size of the end-to-end INT telemetry data is
always 160B (i.e., with 5 hops). So the upload rate under
the INT-path architecture is k3/4 ∗ 160 ∗ 100 ∗ 8bps. In the

According to INT-path, the minimized non-overlapped undirected path
number is the same as the pair of odd vertices. In this paper, we consider the
directed path number, which doubles the undirected path number.

HULA architecture, each switch in the lowest layer broadcasts
probe packets, and k/2 switches in the higher layer in the
same pod will receive its broadcast probes. Each switch in the
higher layer will further send broadcast probes to the other
(k/2−1) lowest-layer switches in the same pod, so each time
there will be (k/2)∗(k/2−1) probes (each with 64B (2*32B)
INT telemetry data) generated and uploaded to the controller.
In addition, each switch in the higher layer will also send
broadcast probes to k/2 spine switches in the highest layer.
Then, each spine switch sends broadcast probes to (k−1) other
higher-layer switches. These higher-layer switches will further
send broadcast probes to the k/2 lowest-layer switches in
the same pod. These lowest-layer switches will receive probe
packets with a size of 128B (4*32B) INT telemetry data and
upload them to the controller. Since the k-ary FatTree topology
has k ∗ (k/2) lowest-layer switches, the upload rate under the
HULA architecture is ((k/2)∗(k/2−1)∗64+(k/2)3∗(k−1)∗
128) ∗ (k ∗ (k/2)) ∗ 100 ∗ 8bps. In Fig. 2, HULA’s upload rate
increases rapidly along with the network size, terribly reaching
3.03Tbps at k = 28. The upload rate of INT-path also increases
from 256kbps to 702Mbps. The evaluation result is the proof
of the tremendous bandwidth required to transmit telemetry
data between the data plane and the controller, especially in
the case of large network topology, which, however, is very
common in modern data centers.

III. DESIGN AND IMPLEMENTATION OF INT-FILTER

Design Overview. The result in §II demonstrates that
the communication of INT telemetry data between the data
plane and the controller requires huge network bandwidth
occupation. The most common device-internal states, such as
queue depth, however, do not always change randomly in a
short time. With simple prediction algorithms, the states not
changing drastically or changing regularly can be predicted
according to their historical values at the controller. This will
help significantly reduce the volume of data uploaded from the
data plane to the controller. With this basic idea, we deploy
the same prediction on the data plane and on the controller
to predict current values of the device-internal states based
on historical values. If there is minor difference between the
current value and the predicted value at the data plane, the
data plane will notify the controller to use the predicted value
at the controller side by uploading a 1-bit notification flag.
Compared to the 32-Byte INT telemetry data, the 1-bit flag
greatly reduces the uploaded data volume. Since INT-path
is more lightweight due to its non-overlapped probing path
coverage, the proposed INT-filter is built upon the underlying
INT-path architecture to achieve a best-effort mitigation of the
switch-controller channel bandwidth consumption.

Packet encapsulation. The INT-based data plane state
collection can be partitioned into two phases. The first phase
is hop-by-hop device-internal state collection when the probe
packet traverses through multiple devices. The second phase
is end-to-end telemetry data uploading to the controller at the
last hop. Since INT-filter relies on the underlying INT-path
for probing path planning, the packet format of the first phase

Fig. 3. In-band Network Telemetry with state collection filtering (INT-filter).

is exactly the same as that of INT-path, with source routing
(SR) label stack for probe forwarding and INT telemetry data
stack for device state collection. The difference lies in the
second phase. INT-path uploads the probe packet with the
complete end-to-end INT telemetry data received at the last-
hop device to the controller. By contrast, INT-filter reduces
the bandwidth consumption of the switch-controller channel
by conducting “probe filtering” and uploading a rather slim
packet, which is composed of a bitmap with flags indicating
whether the predicted values in the controller can be directly
used. Essentially, there is a one-to-one correspondence be-
tween the flags and the INT telemetry data collected from all
devices along the end-to-end path. If the data plane expects
the controller to use the predicted value for a specific device,
it will replace the 32B INT telemetry data collected from that
device with a 6B TimeStamp and set the corresponding flag
for notification. Such filtering behavior will reduce the traffic
uploaded since some telemetry data is predicted directly at the
controller rather than being transmitted (as shown in Fig. 3).

Forwarding behavior. The probe packet forwarding be-
havior is exactly the same as that of INT-path. At each hop,
the probe is forwarded according to the port ID embedded in
the SR field and the device-internal states of the port will be
recorded into the corresponding INT telemetry data field.

Telemetry result collection. The key of INT-filter is that the
data plane and the controller use the same prediction algorithm
and the same historical data for prediction, so as to ensure that
the same predicted value can be obtained. As shown in Fig. 3,
the first-order polynomial fitting (y = w0+w1 ∗x) is taken as
an example for illustration purpose. Generally, such prediction
method using curve fitting is based on the historical data over
a period of time which we call the prediction windows size
(m). In INT-filter, each probe packet is originated from the
INT generator and collected by the INT collector at the end
of the probing path before being forwarded to the controller.
Each INT collector maintains a database that stores historical
records of each device port. As depicted in Fig. 3, the Database
Host2 stores the latest n records of the 4 ports that the probe
packets sent by Host1 pass through, with a record format
(TimeStamp, Value). Correspondingly, the controller also has

a database for storing historical records of all ports on the
data plane (i.e., the predicted value at the controller using
the same prediction algorithm is very close to the telemetry
data collected at the data plane). In our experiment, the queue
depth of the port serves as the recorded data plane state. The
controller will either collect the uploaded real queue depth or
just use the local predicted value to reduce the upload traffic.

Algorithm 1 Data plane filtering algorithm
Require: probe packet
Ensure: modified probe packet after filtering
1: while Receive an INT probe packet do
2: Parse the probe packet into INT telemetry data
3: for Each INT telemetry data INTi collected from router Rj do
4: Queue depth prediction of a specific router port Rj .P

i.e., pred = my_predict(Rj .P,Database Host, INTi.T)
5: if |pred− INTi.Q| < threshold then
6: Set the corresponding flag to 1 in the bitmap
7: Q = pred
8: else
9: Q = INTi.Q

10: end if
11: update(Rj .P,Database Host, INTi.T,Q)
12: end for
13: end while

Redundant information filtering. First, we expound on
how the INT collector processes the received probe packet
with end-to-end INT telemetry data to generate the compressed
packet with a bitmap of flags. When receiving the probe
packet, Host2 reads the historical value in the Database Host2
and applies the first-order polynomial fitting for curve fitting.
Mathematically, the least squares are used for solving the
n-order polynomial fitting, that is to say, the corresponding
coefficients are solved with the minimum mean square error.
Specifically, when we use a set of historical data (xi, yi), i =
1, 2, · · · ,m to fit the curve y = w0+w1∗x+· · ·+wn∗xn, the
coefficients w0, w1, · · · , wn corresponding to the minimum
value of Q(w0, w1, · · · , wn) =

∑m
i=1(w0 + w1 ∗ xi + · · · +

wn ∗ xn
i − yi)

2 are solved for best curve fitting. Next, the
TimeStamp as the independent variable for prediction is read
out from the probe packet as the input of the fitted curve to
obtain the predicted value (as implemented in the algorithm
my_predict() in Fig.3). If the error between the true value
and the predicted value is less than a predefined threshold,
the predicted value and the corresponding TimeStamp will
be stored in the Database Host2. Otherwise, Host2 will store
the true value and its TimeStamp into the database. During
the database update, the oldest record will be eliminated
to ensure the fixed-size database always maintains the most
recent historical data. The above procedure is performed on
each piece of INT telemetry data. If the predicted value is
stored, the corresponding flag in the Bitmap will be set to
1 and the INT data will be replaced with the corresponding
TimeStamp. Otherwise, the flag will be set to 0. The modified
probe packet is then uploaded to the controller. It should be
noted that our prediction is based on each port’s own data,
so there is no need for time synchronization of each switch.
Algorithm 1 formulates the data plane filtering process.

Second, we elaborate on how the controller handles the
compressed packet and updates the local database. When the

Algorithm 2 Control plane recovering algorithm
Require: modified probe packet after filtering
1: while Receive an INT probe packet do
2: Get the bitmap and parse the probe packet into INT telemetry data
3: for Each INT telemetry data INTi collected from router Rj do
4: if flag of INTi in bitmap = 1 then
5: Q = my_predict(Rj .P,Database Controller, INTi.T)
6: else
7: Q = INTi.Q
8: end if
9: update(Rj .P,Database Controller, INTi.T,Q)

10: end for
11: end while

controller receives the uploaded probe packet, it first reads the
Bitmap. For a particular INT telemetry data, if the correspond-
ing flag in the Bitmap = 1, the controller will read the local
historical value in the database, and predict the queue depth of
the TimeStamp in the probe packet using the simple first-order
polynomial fitting. Then, the controller will store the predicted
value and its TimeStamp in the local database. Otherwise, the
true queue depth and the corresponding TimeStamp will be
stored in the database. This approach provides a significant
reduction of switch-controller channel bandwidth consump-
tion, since for each piece of well-predicted INT telemetry data,
only 1-bit flag and 6B TimeStamp are uploaded instead of
the original 32B telemetry data. Algorithm 2 formulates the
control plane telemetry data recovering process.

Prediction accuracy enhancement (prediction integra-
tion). In addition, polynomial curve fitting of different orders
is suitable for predicting different types of data, such as
first-order polynomial fitting for linear data and second-order
polynomial fitting for simple-curve data. Selecting the most
appropriate order in polynomial fitting will greatly improve
the prediction accuracy. Since the true value is known when
making predictions at the data plane, multiple polynomial
fitting methods with different orders can be used simultane-
ously to report the least error method of the true value to the
controller. In our implementation, first-order, second-order and
third-order polynomial fitting are integrated for prediction in
order to improve the prediction accuracy. Accordingly, the size
of the flag in the Bitmap becomes 2 bits, where 00, 01, 10 and
11 represent the case of not using predicted values, fitting with
first-, second- and third-order polynomial fitting, respectively.
In the data plane, the least error method is selected from the
prediction methods with error lower than the threshold, and
then the corresponding flag is updated in the Bitmap. The
controller selects the corresponding action based on the flag
after receiving the modified probe packet.

IV. EVALUATION

A. Experiment Setup

We build an emulation-based network testbed to demon-
strate the performance of INT-filter. The hardware is a
40-core server (Lenovo System x3850 X6) with four E7-
4800@2.0GHz CPUs and 512GB DRAM. The OS is Ubuntu
16.04. The testbed, composed of 1 controller, 4 spine switches,
4 leaf switches, 4 ToR switches and 8 servers, is on the

��� ��� ��� ���
���������������������������

�
��
��
��
��
	�

�

��
��

��
��

��
��

��
���

�

Fig. 4. The impact of order of poly-
nomial fitting on upload decrease.

�� 	� ��� ��� ���
����������!���"������

�

��

��

��

��

�
��

��
��

��
 �

���
��

�� ���!��� �! �
 ���"

"�����

Fig. 5. The impact of data plane
probe frequency on upload rate.

basis of Mininet [18], organized into the same FatTree topol-
ogy with the HULA paper [4]. Among these eight servers,
server1, server3, server6 and server8 send randomly-generated
traffic (packet size = 1kB) to the other servers. The default
background traffic rate is around 4.8Mbps. The INT-path
algorithm [10] is employed for probing path planning. The
length of INT header is 160B (32B * 5 hop) and SR header
is 10B (2B *5 hop). Prediction window size is the amount
of historical data used for prediction, with a default value of
5. Threshold is the limit used for determining whether or not
to use the predicted value, with a default value of 1. If the
error is less than or equal to the threshold, the INT collector
will upload the flag corresponding to the least-error prediction
method. We write 1323 lines of Python and 282 lines of P4
for the testbed, which are available in our git repository [16].

B. Experimental Results

Impact of order of polynomial fitting. Fig. 4 shows the
impact of different prediction methods on upload decrease.
First-order polynomial fitting has the best performance among
the three basic methods. It can be seen that the maximum
decline of upload rate is about 58.5% when the three fitting
methods are used simultaneously. It suggests that the inte-
gration of multiple methods can indeed achieve the effect of
selecting the most suitable method according to different data.
We can also come to the conclusion that only 1-bit increase of
the flag size decreases the upload rate by 25%. In subsequent
experiments, the integration mechanism is adopted by default.

Impact of probe frequency. Fig. 5 shows the impact of
probe frequency on upload rate. Here, Ground truth is the orig-
inal upload without applying INT-filter. Steady corresponds to
the stable background traffic while Dynamic corresponds to
the background traffic with frequent bursts. It can be seen
that the upload decrease grows gradually with the increase of
probe frequency as more device-internal state predictions are
uploaded instead of the original telemetry data. Furthermore,
when the background traffic is stable, it is easy to predict, so
the upload rate is lower than the dynamic case.

Impact of prediction window size. As shown in Fig. 6,
the larger the prediction window is, the more accurate the
prediction will be, and thus the lower the upload rate will
be. But at the same time, the computational complexity
increases as well with the increasing use of predictions. The
computational complexity is quantified by the average time
required to process the INT probe (e.g., make predictions)
and store the telemetry data into the database. INT-filter has a
much higher computational complexity compared to not using

1 2 3 4 5 6 7 8 9 10
����������������������

180

200

220

240

260

��

��
��

���
��

�
��

���
�

	��

����

����

����

����

����

����

�
��

�
��

�
��

���
��

��

������
�����

Fig. 6. The impact of prediction
window size on the computational
complexity and upload rate.

0.0 0.3 0.6 0.9 1.2 1.5
�����������������������

0
40
80

120
160
200
240
280

��

��
��
���
��
�

��
���

�

	

��

��

��

��

��

�
��
�

��
�
��
���
��

��

������
�����

Fig. 7. The impact of threshold on
the computational complexity and up-
load rate.

� 	 � � �� �� �	 �� �� ��
�����#��� ��

�

��

��

��

	�

�

�
��

��
��

��
�

��
!�

���
�

������"�
������

Fig. 8. Upload decrease under differ-
ent network sizes of FatTree topology
(INT-filter vs. Sel-INT).

� � 	
 �� �� �� �	 �
 ��
����� ������

���
���
��

���
��	
���
���
��

�!
��
��

��
��
��
���
��
��

���������
������

Fig. 9. Average error under different
network sizes of FatTree topology
(INT-filter vs. Sel-INT).

it. We set the default prediction window size to 5, since in
Fig. 6, 5 is a sweet spot for both accuracy and computational
complexity.

Impact of threshold. The prediction accuracy is determined
by the threshold. A large threshold value means that even
in the case of insufficient prediction accuracy, the data plane
can upload the prediction method rather than the original INT
telemetry data. As shown in Fig. 7, with the increase of the
threshold, the upload rate drops gradually, thus increasing
the computational complexity at the controller. The default
threshold is set to 1, a relatively appropriate value compared
to the average queue depth of 50 measured in our experiment.
It suggests that the error between the true queue depth and
the value written in the database must be less than or equal
to 1. The error is too small to affect controller’s network
applications, such as load balancing and failure localization.

Comparison of upload decrease (INT-filter vs. Sel-INT).
Sel-INT [14], a selective INT telemetry system, is composed of
a selective INT header insertion module and a Data analyzer.
The Data analyzer of Sel-INT compares the newly acquired
device-internal state with the latest value recorded in the
database, and does not upload the data with minor change,
thereby reducing the upload volume. In order to compare the
performance of INT-filter and Sel-INT in filtering redundant
telemetry data, we perform a simple simulation in Python.
The variable-scale topology is the same as the one mentioned
in §II. As shown in Fig. 8, the upload decrease rate of INT-
filter gradually declines as the network size increases. Since
there are more packet generators in the network, the number
of packets passing through each switch per second varies more
greatly, making it harder to predict. However, it can be seen
that the upload decrease of INT-filter is invariably much higher
than that of Sel-INT (about 6 times). This indicates that our
algorithm performs better in redundant information filtering.

Comparison of average error (INT-filter vs. Sel-INT).
Since INT-filter invokes predictions rather than uploading true
values and Sel-INT [14] does not upload telemetry data with
minor variation, there will be a gap between the controller-side

network telemetry results and the underlying real device states.
We calculate the average error of 100 pieces of INT telemetry
data processed by INT-filter and Sel-INT, respectively. The
error threshold of INT-filter is set to 1 by default, which means
that the error caused by each piece of INT telemetry data is
a maximum of 1. Moreover, because only part of the INT
telemetry data is filtered out, the average error rate is far less
than 1. As shown in Fig. 9, the average error rate of INT-filter
is mere 1/10 of that of Sel-INT, and neither of them changes
rapidly with the network size. Through the analysis of Fig. 8
and Fig. 9, it can be concluded that compared with Sel-INT,
INT-filter not only filters out more redundant INT telemetry
data but also has a much lower error rate.

V. RELATED WORK

Openflow [11], completely decoupling the control plane
from the data plane, requires frequent interactions of various
information between the switch and the controller through
controller’s southbound interface, which is the bottleneck of
efficient network management. Gao et al. [19] reduce the
southbound bandwidth occupation by an effective detection
method that defeats the Packet-In messages flooding attack
with low overhead and high accuracy. Nevertheless, their
method cannot reduce the INT telemetry data bandwidth
occupation of the southbound interface since it is not only
an excessive consumption of flow table resources, but also
cannot deal with the changing device-internal states. [12] and
[13] reduce the uploaded INT telemetry data by dynamically
adjusting the detection frequency of the data plane to reduce
unnecessary detection. The basic idea behind their architecture
is to reduce the detection frequency when the telemetry data
does not change significantly, such as queue depth. They
can only reduce the probe frequency of state-stable nodes.
However, it is impossible to handle situations where the node
state is changing regularly but still predictable, such as the
queue depth increasing/decreasing steadily. Tang et al. [14]
propose Sel-INT, which can not only reduce the telemetry
frequency of the INT data collection through the network,
but also reduce the upload volume of the INT telemetry data
through the southbound interface. In the Sel-INT architecture,
the SDN controller will analyze historical INT data with the
Fourier transform and set the sampling frequency to twice
the lowest point frequency. The last-hop switch duplicates
the INT packet to the Data Analyzer for network monitoring
and further processing. The Data Analyzer then reports most
significant information to the controller. In the same way, their
method cannot deal with situations where the state change
of the node is regular and can be predicted. The INT-filter
proposed in this paper uses the idea of predicting through
historical data, which can reduce the uploads of not only nodes
with stable status, but also nodes with predictable status. In
addition, as a standalone module, our method can co-work
with other methods, such as [12–14].

VI. CONCLUSION

In this work, we propose INT-filter, a highly efficient data
collection architecture for high-resolution In-band Network

Telemetry. Instead of uploading the original telemetry data,
INT-filter uploads a flag indicating whether or not to use the
predicted value, thus reducing redundant uploads. In addition,
the combination of different prediction methods significantly
improves the prediction accuracy, further reducing the amount
of telemetry data collected. The saved bandwidth can further
be occupied by other critical control messages that need to be
timely transmitted through the southbound interface.

REFERENCES
[1] T. Pan, E. Song, C. Jia, W. Cao, T. Huang, and B. Liu, “Lightweight

network-wide telemetry without explicitly using probe packets,” in
IEEE INFOCOM 2020-IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS). IEEE, 2020, pp. 1354–1355.

[2] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. Maltz, Z. Liu,
V. Wang, B. Pang, H. Chen et al., “Pingmesh: A large-scale system for
data center network latency measurement and analysis,” in Proceedings
of the 2015 ACM Conference on Special Interest Group on Data
Communication, 2015, pp. 139–152.

[3] C. Jia, T. Pan, Z. Bian, X. Lin, E. Song, C. Xu, T. Huang, and Y. Liu,
“Rapid detection and localization of gray failures in data centers via
in-band network telemetry,” in NOMS 2020-2020 IEEE/IFIP Network
Operations and Management Symposium. IEEE, 2020, pp. 1–9.

[4] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford, “Hula: Scal-
able load balancing using programmable data planes,” in Proceedings
of the Symposium on SDN Research. ACM, 2016, p. 10.

[5] J. R. Hearn, P. Connor, K. Sood, S. P. Dubal, and A. J. Herdrich,
“Real-time local and global datacenter network optimizations based on
platform telemetry data,” Mar. 30 2017, uS Patent App. 14/866,869.

[6] J. Case, M. Fedor, M. L. Schoffstall, and J. Davin, “Rfc1157: Simple
network management protocol (snmp),” 1990.

[7] C. Kim, A. Sivaraman, N. Katta, A. Bas, A. Dixit, and L. J. Wobker,
“In-band network telemetry via programmable dataplanes,” in ACM
SIGCOMM, 2015.

[8] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87–95, 2014.

[9] Q. Zhang, V. Liu, H. Zeng, and A. Krishnamurthy, “High-resolution
measurement of data center microbursts,” in Proceedings of the 2017
Internet Measurement Conference, 2017, pp. 78–85.

[10] T. Pan, E. Song, Z. Bian, X. Lin, X. Peng, J. Zhang, T. Huang,
B. Liu, and Y. Liu, “Int-path: Towards optimal path planning for in-band
network-wide telemetry,” in IEEE INFOCOM 2019-IEEE Conference on
Computer Communications. IEEE, 2019, pp. 487–495.

[11] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[12] Y. Kim, D. Suh, and S. Pack, “Selective in-band network telemetry
for overhead reduction,” in 2018 IEEE 7th International Conference on
Cloud Networking (CloudNet). IEEE, 2018, pp. 1–3.

[13] D. Suh, S. Jang, S. Han, S. Pack, and X. Wang, “Flexible sampling-based
in-band network telemetry in programmable data plane,” ICT Express,
vol. 6, no. 1, pp. 62–65, 2020.

[14] S. Tang, D. Li, B. Niu, J. Peng, and Z. Zhu, “Sel-int: A runtime-
programmable selective in-band network telemetry system,” IEEE Trans-
actions on Network and Service Management, 2019.

[15] “P4 switch behavioral model,” https://github.com/p4lang/behavioral-m
odel, 2018.

[16] “Int-filter repository,” https://github.com/graytower/INT_FILTER,
2020.

[17] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in ACM SIGCOMM Computer Communi-
cation Review, vol. 38, no. 4. ACM, 2008, pp. 63–74.

[18] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid
prototyping for software-defined networks,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks. ACM, 2010,
p. 19.

[19] D. Gao, Z. Liu, Y. Liu, C. H. Foh, T. Zhi, and H.-C. Chao, “Defending
against packet-in messages flooding attack under sdn context,” Soft
Computing, vol. 22, no. 20, pp. 6797–6809, 2018.

