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Abstract—Network reliability becomes increasingly important
in modern data center networks (DCNs). The DCNs are expected
to work sustainably under internal failures and assist network
operators in troubleshooting them rapidly. However, some net-
work failures will happen silently with packets discarded without
producing any explicit notification before causing tremendous
damage to the network. To troubleshoot these “gray failures”,
in this work, we present a rapid gray failure detection and
localization mechanism based on the recently proposed In-band
Network Telemetry (INT). Specifically, we leverage simplified INT
probe packets to conduct network-wide telemetry to help the
servers under ToR switches obtain all the feasible paths between
sources and destinations. Once a network failure occurs, the
affected thus unavailable paths will immediately be detected and
flushed out of the path information table at each server by a time-
out mechanism. Hence, servers can proactively perform source
routing-based fast traffic reroute to avoid massive packet loss and
retain uninterrupted quality of experience. At the meantime, all
the aged path entries will be uploaded to a remote controller
for centralized failure localization by identifying common path
elements. To verify the feasibility of our design, we build a virtual
network testbed with software P4 switches and a Redis database.
Evaluation shows that our system can successfully detect network
gray failures and reroute the affected traffic in no time while
complete failure localization within only a few seconds.

I. INTRODUCTION

Data centers play an essential role in today’s information
ingestion, dissemination, computation, storage and manage-
ment [1]. Meanwhile, the data center networks (DCNs) evolve
to become mega-scale and high-density to meet diverse de-
mands from heterogeneous user applications [2]. Specifically,
DCNs are expected to achieve huge throughput to carry a great
amount of aggregated traffic [3], ultra-low latency for fast
response [4] and high security to protect private user data [5].
In addition, reliability of DCNs is also of great concern from
both users and network operators that stirs up tremendous
research interests [6–13]. It is expected that the DCNs can
work uninterruptedly under random failures and help the
network operators identify and resolve them rapidly, because
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the damage caused by failures is often evaluated according to
the time duration before the failures get repaired [14].

Network failures can be divided into two categories. The
first category of failures, including sudden power lost of the
network equipment, abnormal link disconnection, etc, always
occurs with corresponding alarms, making it straightforward
to detect and locate. However, the other category of failures
called gray failures (or silent failures or black holes) is more
sophisticated and harmful [6]. The causes of gray failures
range from the misconfiguration of network devices to the
flaws in network protocol design or bugs in software design,
all of which will make data packets discarded silently without
any explicit notification. Therefore, it usually takes hours or
even days to detect and locate gray failures while they have
already made enormous damage. Hence, it is crucial to work
out a mechanism to rapidly detect and locate gray failures.

In-band Network Telemetry (INT) [15] is a fine-grained
monitoring architecture designed for collecting real-time net-
work states in the data plane without requiring much inter-
vention from the control plane CPU. In the INT model, a
dedicated probe packet is used to traverse the network, while
the INT-capable devices along the probing path will insert
device-internal states into the probe packet. The probe packet
can be collected by a remote centralized controller which will
extract and analyze the telemetry metadata from the probe
packet for network-wide congestion visualization, network
event detection and network troubleshooting, etc [11].

In this work, we present a rapid gray failure detection
and localization mechanism based on INT. First, servers will
periodically send simplified INT probes to collect the end-
to-end path information. The probes will be multicasted to
reach all the servers except the sender, covering all feasible
paths between sources and destinations. Second, each probe
collector, which is also a server, will store these feasible paths
into a path information table. Once gray failures occur, the
affected path entries will be timed out due to the absence of
the periodical probes. The server will get aware of this and
proactively conduct traffic reroute via source routing to bypass
the infeasible paths. Third, all the timed-out path entries will
be uploaded to a remote controller for centralized failure
localization. Since a single failure point can affect multiple
paths, the controller will find out the commonality among
these paths for failure localization.
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• We raise a mechanism to rapidly detect network gray
failures in DCNs based on INT. Specifically, we leverage
a slim probe packet to collect all the feasible paths in
the network and detect the network failures. Furthermore,
we use source routing to reroute the traffic to bypass the
infeasible paths once network failures are detected.

• We introduce a remote centralized controller to collect
all the path entries which are timed out due to network
failures from the servers. Then, the controller will find
out the commonality among these timed-out paths to fast
and precisely locate the network failure point.

• We build a network emulation system with software P4
switches to verify the feasibility of our design. The source
code is available at our git repository [16]. Evaluation
shows that our system can successfully detect network
gray failures and reroute the traffic in no time, and
complete the failure localization within a few seconds.

II. CHALLENGING ISSUES

Lightweight network-wide telemetry. Gray failures may
occur at any port of any device in DCNs, causing silent link
breakdown and packet loss. To find out potential failures at
the corners of the network, the entire network should be
exhaustively monitored by the probe packets. A straightfor-
ward solution to achieve this is simply flooding the probe
packets into every corner of the network. However, we still
need to consider two vital constraints. First, the telemetry
traffic will also contribute to considerable link bandwidth
occupation, causing potential network congestion. To this end,
a lightweight network-wide telemetry solution is appealing
with the telemetry overhead reduced as much as possible.
Second, for some specific DCN topologies, arbitrarily flooding
the probes may cause probing loops. To this end, we need
to carefully design specific multicast strategies for specific
topologies to ensure loop-free telemetry.

Prompt reaction to network failures. Gray failures in
DCNs are like black holes, which bring about silent loss
of a huge number of packets. Even though end-host users
or network operators may finally notice the abnormal traffic
behaviors, it usually takes rather long time to troubleshoot
the exact locations of gray failures before rerouting the traffic
to bypass those black holes. The longer the reaction time,
the heavier the loss of traffic. Besides, the loss of traffic
will further trigger packet retransmission at the end hosts,
causing even more congestion in the network. Conventionally,
the data plane is the first witness of the gray failure. Then,
it reports the failure to the centralized controller for further
identification before the global reroute decision is generated
by the controller. The traffic reroute will finally take place
after the install of the updated forwarding rules. However, the
above controller-switch interactions involve considerably large
latency before the gray failure resolution. It is a challenging
issue to promptly react to network failures (e.g., by data plane
fast reroute) to tremendously reduce the packet loss.

Precise localization of network failures. With network-
wide telemetry and local reroute decision, the data plane

Fig. 1. Architecture of INT-based gray failure detection and localization.

can directly identify the broken paths and reroute the traffic
to bypass these paths. However, the network operators will
still want to figure out the root cause of the path failures
(e.g., which link/port is broken?), because reroute is only a
temporary solution to reduce packet loss while the final solu-
tion should be the identification and elimination of the exact
failure point. Considering that the device with the internal gray
failure will not proactively report its bad condition, we have
to rely on probe packets injected from outside as well as their
abnormal behaviors or feedbacks to determine the exact failure
point location. To summarize, fast and precise localization of
network failures is also a research topic worth studying.

III. SYSTEM DESIGN

A. Overall Architecture

Our design is divided into three subsystems, namely,
network-wide telemetry, network failure detection and fast
traffic reroute at the local servers, network failure notification
and localization at the remote controller (as shown in Fig. 1).
First, servers will periodically send simplified INT probes
(green arrows) to inspect all the feasible paths between sources
and destinations. The collected information in the INT probes
includes the identities of the switches they pass through and
the corresponding ingress and egress port IDs. The probe
packets will be multicasted to cover all feasible paths and
reach all other servers except the sender. Second, each probe
packet collector, which is also a server, will store these feasible
paths in a path information table with an aging time for
each path entry. Based on the path information table, servers
can proactively send data packets onto the feasible paths
via source routing (SR) [17] (blue arrows). When network
failures occur, the probes will not be able to pass through
the affected paths, making the relevant entries in the path
information table aged/timed out thus the network failures
can be detected promptly by the local servers. Given the
affected path entries are aged, the subsequent traffic will be
rerouted to other feasible paths to prevent packet loss. Third,
since the path breakdown information at a single server is



Fig. 2. Multicast-based routing of probe packets in a fat tree topology.

insufficient for precise network failure point localization, the
controller needs to collect the path breakdown information
from all the affected servers for centralized analysis (red
arrows). More specifically, the controller will find out the
commonality among these aged/timed-out paths to locate the
exact failure point of a single link between two devices. We
elaborate the three subsystems as follows.

B. In-band Network-Wide Telemetry

Probing path planning for network-wide coverage. It
is expected that the generated probe packets will cover all
network paths for exhaustive on-path link state inspection
and reach the servers at the other side for end-to-end path
detection. To achieve this, we install dedicated forwarding
rules into the switches, so that the switches will always send
the probe packets to all the outgoing ports except the ingress
port from which the probe packet comes in. This forwarding
behavior ensures that the probe packets will traverse the whole
network without triggering any forwarding loops. Fig. 2 shows
how the probe packets generated from Server1 are forwarded
in a 3-level fat tree topology [18]. The forwarding rules in
each switch along the probing path are detailed as follows.

• For the ToR switch, when it receives a probe packet
from a server, it will forward it to all the connected leaf
switches (e.g., Sever1 → T1 → L1 and L2). When it
receives a probe packet from a leaf switch, it will forward
the probe packet to the underneath servers (e.g., L3 →
T3 → Server5 and Server6).

• For the leaf switch, when it receives a probe packet from
a ToR switch, it will forward the probe packet to all the
ports except the ingress port (e.g., T1 → L1 → S1, S2
and T2). When it receives a probe packet from a spine
switch, it will send it to the underneath ToR switches
(e.g., S1 → L3 → T3 and T4).

• For the spine switch, it can only receive the probe packet
from the leaf switch, and it will send it to all the other
leaf switches it connects with (e.g., L1 → S1 → L3).

In other words, the switches should forward the probe
packet to the corresponding multicast group based on the

switch type as well as the ingress port, which can be pre-
configured by the controller. There is no need to update the
data plane configuration unless the topology changes.

Probe packet generation at the server side. In our design,
distinct from the previous work HULA [19] that generates
probe packets via the ToR switches, we generate probe pack-
ets via the end servers, or more specifically, via the smart
NICs [20] attached to the servers. Actually, deploying probe
generators at the server side leads to many benefits. First,
our design can provide complete end-to-end path monitoring
covering the links between the switches as well as the links
between the servers and the ToR switches (i.e., the first and the
last hop). By contrast, HULA probes are generated by the ToR
switches and can only inspect the links between the switches
and any gray failure occurring at the first/last hop (e.g., server
NIC port breakdown) cannot be quickly discovered. Second,
in our design, end servers are aware of the gray failures in
the network because they are at the endpoints of the telemetry
paths. As a result, they can promptly react to manage the traffic
they generate by proactively conducting traffic engineering
(e.g., using source routing). However, end servers in HULA are
unaware of what happens in the network, therefore cannot take
any effective measure to timely respond to network failures.
While gaining so many benefits, deploying probe generators at
the server side also brings about huge telemetry performance
overhead, that is, the probe packets generated by so many
end servers will aggregate and heavily consume the limited
network bandwidth. To reduce the telemetry overhead, under
each ToR switch, we allow only one server at a time for probe
generation, which is based on our observation that, under the
fat tree topology, the probe packets generated from all the
servers under the same ToR switch share the exactly same
probing path starting from the ToR switch. To inspect all the
links between the servers and their ToR switch, we periodically
change the chosen server for probe packet generation.

Probe packet forwarding at the switch side. In the origi-
nal INT model [15, 21], the INT-capable device is expected to
expose sufficient hardware-internal states to the probe packets,
including the switch identity, the ingress/egress port ID, queue
depth and queuing latency. With all these states extracted,
the centralized controller can obtain the real-time congestion
distribution across the network and conduct the corresponding
traffic scheduling. To achieve prompt failure detection and
localization in this work, however, not all above internal states
(e.g., queuing behaviors) are needed because we only care
about whether the link is up or down rather than its congestion
status. Besides, less extracted device states make the probe
packet more slim and eat up less network bandwidth. The
part of hardware-internal states extracted by the probe packet
are listed and explained as follows.

• switch_id (8-bit): The identity of the switch. Each switch
is assigned with a unique ID by the controller.

• ingress_port (8-bit): The ingress port ID from which the
probe packet goes into the switch.

• egress_port (8-bit): The egress port ID from which the
probe packet leaves the switch.



(a) Porbe packet format.

(b) Probe packet forwarding.

Fig. 3. The format and forwarding of the simplified/slim INT probe.

Fig. 4. Server1’s path information table.

As shown in Fig. 3, the initial probe packet generated from
the end server is composed of an Ethernet header and an IP
header. We assign 0x700 as its protocol number to denote it
is a simplified INT probe. As the probe packet passes through
the network, the switches along the path will insert the INT
information into the probe just behind its IP header. Finally, at
the other endpoint of the telemetry path, the INT information
is arranged as a stack inside the probe packet with the first
piece of INT information residing at the end of the probe.

C. Network Failure Detection and Fast Traffic Reroute

Path information table. After receiving the probe packets,
the INT information carried by these probe packets will be
parsed and stored locally in a path information table in each
server at the receiving side. The path information table of
Server1 is shown in Fig. 4, which illustrates all the servers that
can be reached by Server1 and all the paths that can be taken.
Each path entry consists of a group of switches as well as the
corresponding ingress and egress ports in the probing path,
along which the data packet can reach the specific destination
server (because it shares exactly the same path with the probe
packet). For example, if a data packet is sent from Server1
to Server2, the only path it can take is to go into sw9 from
port 3 (sw9_3) and then leave the switch from port 4 (sw9_4)
according to the illustrated path information table.

(a) Data packet format.

(b) Data packet forwarding.

Fig. 5. The format and forwarding of the data packet.

Gray failure detection via path aging. Each entry in the
path information table is appended with an aging time tag.
The table entry will be aged/timed out after a certain period
of time unless it is updated by a newly arrived relevant probe
packet with the aging time reset. If network failures occur,
some probe packets will be dropped, prevented from reaching
the destination server. Consequently, the relevant entries will
be timed out. In other words, an entry will always exist in the
table if the relevant probe packets are continuously received
by the server while any timed-out entries indicate that there
are some path failures occurring in the network. Since the
intermediate switches cannot get aware of the gray failures by
themselves to proactively generate notifications, we have to
detect the gray failures using the above probe-based approach.
There is one more question to clarify that how to differentiate
gray failures from network congestion in our approach, since
network congestion will also cause buffer overflow and packet
loss. Actually, we can configure a bit longer aging time (e.g.,
1s) to filter out some light congestion (because light congestion
will not last too long due to the fast decrease of the congestion
window size). As for more severe congestion, paths could still
be timed out but we think this can reasonably be regarded as
some kind of network failures for dedicated treatment.

Fast traffic reroute via source routing. When some path
breakdown is detected, the corresponding server will promptly
reroute the affected data traffic according to the latest path
information table using source routing (SR) [17]. SR is a hop-
by-hop routing mechanism for the packet sender to specify
the exact path along which the data packets pass through the
network. As shown in Fig. 5, the data packet with SR metadata
embedded is labelled with 0x701 as its protocol number, and
all the egress ports along the specific path are arranged into
the SR metadata located behind the IP header. When the data
packet passes through the network, the switch will forward
the data packet to the egress port completely according to the
first parsed (i.e., left-most) SR information. At the same time,
the used SR information will be removed, ensuring that it will
not be used again by the next switch. The SR information



embedded in the data packets is optimally selected based on
the real-time available paths in the path information table.
Therefore, the timed-out path entries due to network failures
will no longer be used and the affected traffic will be rerouted
to the available paths at once.

D. Network Failure Localization at the Remote Controller

Network failure remote notification. Although network
path failures can be detected by servers with traffic rerouted
promptly to bypass the affected paths, it is still far away
from network failure elimination unless the exact port/link
breakdown can be located. However, since there is no global
network view shared among the distributed servers, the timed-
out path entries in a single server are insufficient for locating
the exact network failure point. Here, following the SDN
design paradigm [22], we introduce an external controller to
collect path failure notifications sent from all the distributed
servers and conduct centralized network failure localization.
Specifically, each server should notify the remote controller
about the broken paths when it deletes the timed-out entries.

Centralized network failure localization. In data center
networks, multiple paths can be affected even by a single
point failure and this observation can be utilized for precise
network failure localization. By identifying the commonality
among all the timed-out path entries, the scope of network
failure will be gradually narrowed to a single link between two
devices. Specifically, when the controller receives two timed-
out path entries for the first time, it will find the commonality
between them, which is considered as the result of the first
round. Then, the subsequently received timed-out path entry
will be compared with the result of the last round for finding
the commonality between them. The above process will iterate
until the link breakdown position is finally located with enough
path failure information. For example, all the paths affected
by the link failure between T1 and L1 are shown in Fig. 6.
Since the timed-out path entries are sent to the controller from
distributed servers, the order of path entries received by the
controller is uncertain. If the 39th and the 40th path entries are
received by the controller first, the commonality between them
will be sw12_4 → sw12_1 → sw7_4 and sw5_3 → sw9_1
→ sw9_4. And then if the controller further receives the 1st
path entry, which is sw9_3 → sw9_1 → sw5_3 → sw5_4
→ sw10_1 → sw10_3, the commonality between the newly
received path entry and the previous result will be sw5_3 →
sw9_1 (sw5_3 → sw9_1 and sw9_1 → sw5_3 are essentially
the same link). Finally, the network failure will be located
between port 3 of L1 (sw5_3) and port 1 of T1 (sw9_1). The
above example also shows that there is no need to receive all
the timed-out path entries before locating the failure point.

IV. IMPLEMENTATION

A. Network Testbed Setup

We use Mininet [23] to create the virtual network environ-
ment, which includes four spine switches, four leaf switches,
four ToR switches and eight servers as shown in Fig. 2. To
allow arbitrary packet header customization of INT, we use the

Fig. 6. Paths affected by the link failure between T1 and L1.

simple switch model (a targeted switch architecture) of BMv2
(a software-based P4 switch) [24] to implement the virtual
programmable switches in our testbed. Although the simple
switch model of BMv2 might has some difference with the
real hardware P4 switch, it is good enough for our design
verification. In addition, we implement a remote controller
using a separate OS process, which receives notifications from
the servers for network failure localization. The controller
communicates with the servers through the network socket.
We write about 400 lines of P4 and Python code in total
for creating such virtual network testbed, which is completely
available in our git repository [16].

B. Probe Generation, Collection and Storage
In the network created by Mininet, each server is a separate

process, which means we can further spawn child processes to
implement subtasks such as sending and receiving probe/data
packets, and interacting with the remote controller. We lever-
age Python’s Scapy library to write scripts for probe packet
generation and collection. In the probe generation script, we
can alter the telemetry frequency by adjusting the process
sleeping time, which is set to 0.01s by default. After receiving
the probe packets, we will parse them and store the telemetry
results into a Redis database allocated on each server. Redis
is an in-memory key-value database that has a high data
read/write speed as well as good support for concurrency,
available for high-speed probe packet handling in real time.
Similarly, background data traffic is sent and received with the
Scapy scripts as well. We write around 250 lines of Python
code for probe/data traffic manipulation.

C. Network Failure Notification and Localization
In Redis database, changes to the database including data

addition, modification and aging operations can be published
to specific channels while other agents can quickly get aware
of these changes by subscribing the channels. In our system,
we set an aging time for every entry of the path information
table in the database. Once any table entry ages, it will be
published to a specific channel. At the same time, we start a
separate OS process at each server to subscribe the channel
and send a notification to the remote controller about the aged
entry through the network socket. The controller will further
analyze the received notifications for centralized network
failure localization by identifying common path elements. This
part of logic contains about 30 lines of Python code.



(a) Bandwidth occupation of probe packets. (b) Bandwidth occupation in multi-senders. (c) Bandwidth occupation in single-sender.

Fig. 7. Bandwidth occupation of probe packets and data packets under single-sender and multi-senders modes.

V. EVALUATION

A. Experimental Setting

In this section, we will evaluate our design in the following
three perspectives through extensive experiments:

• What performance impact does periodical network-wide
telemetry have on the original network?

• Can network devices detect and locate the gray failures
rapidly by using the mechanisms we propose?

• How to make our system work more efficiently under
different network conditions by tuning parameters?

We conduct experiments on an x86 server with the CPU of
Intel Xeon E5-2603 v4 @ 1.70GHz, 6 cores and the memory
of 32GB, running Ubuntu Linux 16.04.

B. Telemetry Overhead

Before conducting telemetry, we need to select the probe
packet generators from all the servers and set the appropriate
probing interval. As mentioned earlier, we have two possible
ways to deploy probe generators. The first is called multi-
senders, which requires all the servers to send probe packets.
The second is single-sender, which uses only one server at a
time and changes the server periodically under the same ToR
switch for probe generation. We compare the two approaches
for probe generation and also study the relation between the
telemetry interval and the network resource occupation.

We monitor the traffic load on the link between L1 and T1,
whose bandwidth is limited to 12Mbps. At first, we adjust the
data traffic sending rate at the servers, ensuring that the data
traffic occupies the entire network bandwidth. After that, we
inject probe packets into the network. As shown in Fig. 7(a),
as the telemetry interval increases, the probes will occupy less
bandwidth in both multi-senders and single-sender approaches.
Since the number of the probe senders in multi-senders is
twice that of single-sender, the probes in multi-senders occupy
around twice as much bandwidth as that in single-sender.

Fig. 7(b) and Fig. 7(c) show the performance impact of
introducing probe packets into the original traffic under two
deployment modes. With the increase of the telemetry fre-
quency, more and more probe packets get into the network,
which will at the same time take up part of the link band-
width thus make the bandwidth occupied by the data packets
lower. In addition, higher telemetry frequency makes the total
bandwidth occupation of both data packets and probe packets
less than 12Mbps (i.e., 1.5MB/s), and the reduction is more

Fig. 8. Fast traffic reroute.

significant under multi-senders mode. By analyzing the CPU
usage in servers, we figure out that the probe generation will
consume CPU resource and the higher telemetry frequency
means more CPU clock cycles will be used for sending probes,
resulting in a lower packet sending rate in total.

It can be inferred that with the increase of the number of
servers under each ToR switch, the performance advantage of
single-sender will be even more obvious, although it needs
additional efforts for periodical server scheduling as well.

C. Fast Reroute Triggered by Failure Detection

We verify whether the traffic can be rapidly rerouted after
the network failure is detected by monitoring the traffic
changes on the link between T1 and L1 (i.e., link A). We also
name the link between T1 and L2 as link B. To make the result
clear and distinct, Server1 and Server2 will continuously send
data packets while other servers will not. Most packets sent
from Server1 and Server2 (except those sent between Server1
and Server2) will pass through link A or link B with roughly
equal probabilities, which means the traffic conditions in these
two links should be similar. We monitor the traffic on link A
for 20 minutes, and then artificially create a network failure
on link B during this period of time, to figure out whether all
the traffic will pass through the feasible path instead of the
path with the network failure at once.

As shown in Fig. 8, there are about 700 packets per second
on link A from 0 to 450s and the similar traffic on link B.
At 450s, we disconnect link B, then the number of packets
per second on link A rapidly increases to 1400 in no time,
indicating that the traffic which should have passed through
link B is now passing through link A. It means the servers can
quickly reroute the traffic to the feasible paths when network



(a) Aging time: 0.5s. (b) Aging time: 0.75s. (c) Aging time: 1s.

Fig. 9. Time of network failure localization under different aging times.

Fig. 10. Timeline of network failure localization.

failures occur under the help of telemetry. At 900s, the link
between T1 and L1 is reconnected, the number of packets per
second on link A is now rapidly decreasing to 700, which is the
same as that before the network failure. Since the telemetry is
continuously performed by the servers, the link reconnection
can be fast detected by the servers and then the newly feasible
paths will be used for data packet sending. The result shows
that the telemetry together with SR can help servers detect
network failures and reroute the traffic in a very short time.

D. Timeline of Network Failure Localization

Once the controller receives enough aged path entries from
servers, the network failure can be located. The faster the
failure is located and repaired, the less damage it will cause.
Here, we study the impact of aging time, telemetry interval and
data packet sending rate on the efficiency of network failure
localization, which is defined as the time between network
failure occurrence and its final localization.

Fig. 9 shows that the aging time roughly determines the
time of network failure localization, since the network failure
can be discovered only after the aging of the corresponding
path entries. Therefore, the shorter the aging time is, the
more timely the network failure can be detected and located.
Besides, the time of network failure localization is shorter
than the aging time. This can further be explained through the
timeline of network failure localization as shown in Fig. 10.

As mentioned earlier, the aging time of each entry in the
path information table will be reset once the relevant probe
packets arrive. When failure occurs, as some entries begin
aging (at TA) before the occurrence of the network failure (at
TB), no relevant probe packet can reach the servers and reset
the aging time of these entries, making them aged at TC . Since
the controller only needs to make a simple calculation with

the received aged path entries (this will not take a long time),
hence the time between TC and network failure localization
(TD) is very short. Therefore, the time between TB and TD is
usually shorter than that between TA and TC , indicating the
time of failure localization will be shorter than the aging time.

It is also shown in Fig. 9 that the time of network failure
localization goes smaller during the increase of the telemetry
interval. The reason is that when the network failure occurs, it
will prevent the subsequent probe packets from reaching the
servers while some probe packets that have already passed
the faulty links and been buffered in the switches before the
occurrence of the network failure can still reach the servers.
These probe packets will continuously reset the aging time
of the relevant entries in the path information tables after
the occurrence of the network failure, making the servers
mistakenly believe these paths are still feasible. However,
as the telemetry interval increases, there will be less probe
packets in the network and the entries in the path information
table will be less updated. As a consequence, the server can
detect the network failure much earlier. Similarly, a larger
data packet sending rate can also accelerate the localization
of network failures. Since a larger data packet sending rate
will delay the sending of probe packets or even cause probe
packet loss, resulting in a less updated path information table.

E. Fake Notification

Although a lower telemetry frequency or larger data packet
sending rate will make network failure localization faster, it
will also put servers at the risk of generating fake notifications
because probe packets cannot reach servers timely. We count
the number of failure notifications received by the controller
within 10 minutes when there is no real network failure. The
result shown in Fig. 11 indicates that a smaller telemetry
interval should be picked under the condition of a high data
packet sending rate. Otherwise, fake notifications are likely to
occur. Furthermore, the aging time of each entry in the path
information table should be at least larger than the telemetry
interval so as not to generate fake notifications.

F. System Parameter Tuning

There are three important system parameters involved,
namely, the aging time, the telemetry interval and the back-
ground traffic rate, which have significant impact on the failure
resolution efficiency. Among the three parameters, the first two



Fig. 11. Number of fake notifications.

are tunable while the third one is determined by the real traffic.
Based on the experiments above, we propose the following
heuristics for system parameter tuning.

First, we should estimate or directly measure the Round-
Trip Time (RTT) in the real network environment. RTT is the
time taken for a packet to go from the starting point to the
destination and then back again to the starting point, which is
an important indicator for network congestion [25]. If RTT is
large, high telemetry frequency should be guaranteed so as to
prevent the fake notification, although it will also cause high
performance overhead and large delay of failure detection.
Network operators need to make trade-offs between them. If
RTT is small, a low telemetry frequency is satisfactory. The
aging time of each entry in the path information table should
be at least larger than the telemetry interval, ensuring that there
is no fake notification as much as possible. It is noted that the
aging time cannot be set too large as well, which will affect
the timely detection and localization of network failures.

VI. RELATED WORK

Protocol-independent forwarding and derived telemetry
applications. The rapid detection and localization of gray
failures in our proposal rely heavily on the In-band Network
Telemetry (INT) primitive proposed in [15]. In INT, a probe
packet can extract device-internal states when it travels through
the network devices and modify the probe packet header to
accommodate the extracted states. Such ability of arbitrarily
modifying the packet header is guaranteed by the protocol-
independent forwarding architecture proposed in [26]. In
protocol-independent forwarding, switch data plane can be
programmed using the P4 language for adding customized net-
work functions. The original INT specification defines several
types of device-internal states to extract including forwarding
latency and queue depth [21]. While in our solution, we
tailor the original INT probe to carry only the switch ID
and the ingress/egress port. Such simplified/slim probe packet
format is dedicated to network troubleshooting with much
reduced bandwidth overhead. For network-wide telemetry,
INT-path [11] proposes a high-level orchestration of INT to
generate non-overlapped probing paths with a minimum path
number that cover the entire network. INT-path is theoretically
perfect but with a deployment flaw that any topology change
will trigger the replanning of the probing paths, which is

inadaptable to failure-prone DCNs. Besides, servers in INT-
path are unaware of the in-network congestion status, which
means the remote controller is required for both network
failure detection and localization by analyzing the collected
telemetry results. HULA [19] is another telemetry application
based on P4 and the INT-like primitive. It introduces a
multicast-based probing method for specific DCN topologies.
HULA has made an attempt for network failure detection.
Specifically, HULA probe packets are sent between switches
to monitor the links between them. The switches will reroute
the traffic immediately after network failures are detected.
However, if network failures occur at the links between the
ToR switches and the underneath servers, they will not be
detected by the HULA probes. Furthermore, HULA does not
address the network failure localization problem.

Network troubleshooting of gray failures. The size expan-
sion of DCNs leads to the rising frequency of gray failures.
[8] defines and models the gray failures, and proposes an idea
to detect and locate them, that is, leveraging the observa-
tions from a large number of different components that are
complementary to each other to help uncover gray failures
rapidly. Our failure localization scheme actually follows this
design philosophy by identifying common path elements from
multiple notifications. Pingmesh [12] uses TCP or HTTP pings
between end hosts to infer whether the links along the path are
broken according to the connection establish time. It can detect
most network failures while the limitation is that it cannot
precisely locate the faulty device during silent packet drops
unless further using traceroute. NetBouncer [10] relies on
servers to send probe packets through IP-in-IP tunneling [27],
and the probe packets will return through the original path
after reaching the destination switch. The probe packets will
be collected by a processor to infer where the network failures
are most likely to occur by a dedicated algorithm. Since
NetBouncer is deployed in production environment without
using P4 switches thus there are no switch IDs along the
probing path embedded in the probe packets, probabilistic
inferences according to observations are inevitable for fail-
ure localization. Besides, servers in NetBouncer cannot fast
reroute the traffic when failures are detected. [6] also uses
end-to-end probing to detect, and spatial correlation to infer
the failure, without relying on the fine-grained, hop-by-hop
probing ability provided by the programmable switch.

VII. CONCLUSION

In this work, we propose a system for rapid detection and
localization of gray failures in data center networks based
on INT. It allows the servers to obtain the real-time path
information through periodical network-wide telemetry. Once
a failure occurs, the affected servers will detect the failure
and make fast traffic reroute. At the same time, information of
the broken paths will be uploaded to a remote controller for
centralized network failure localization. By carefully tuning
parameters, our system can achieve network failure detection,
traffic reroute in no time, and network failure localization
within only a few seconds, with minor performance overhead.
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