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ABSTRACT
In recent years, service mesh frameworks have gained significant
popularity in building microservice-based applications. A key com-
ponent of these frameworks is a proxy in each K8s pod, named
sidecar, which handles inter-pod traffic. Our empirical measure-
ment reveals that such per-pod sidecars cause numerous problems,
including intrusion into the user pod, excessive resource occupation,
significant overhead in managing many sidecars, and performance
degradation caused by passing traffic through the sidecar.

In this paper, we introduce Canal Mesh, a cloud-scale sidecar-free
multi-tenant service mesh architecture. Canal decouples service
mesh functions from the user cluster and deploys a centralized
mesh gateway in the public cloud to handle these functions, thus re-
ducing user intrusion and orchestration overhead. Through service
consolidation and multi-tenancy, the infra costs of service mesh are
also reduced. To address the rising issues due to cloud-based deploy-
ment, such as service availability, tenant isolation, noisy neighbor,
service elasticity, and additional infra costs, we leverage techniques
including hierarchical failure recovery, shuffle sharding, rapid inter-
vention, precise scaling, cloud infra reuse and resource aggregation,
etc. Our evaluation shows that Canal Mesh’s performance, resource
consumption, and control plane overhead are significantly better
than Istio and Ambient. We also share experiences from years of
deploying Istio and Canal in production.
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1 INTRODUCTION
Service mesh has emerged as an infrastructure that enables service-
to-service communication over networks [41, 42, 47, 51, 55, 68].
Major cloud providers, such as AWS [20], Azure [21], GCP [28],
Alibaba [19], have launched service mesh-based products that sim-
plify building and managing microservice-based applications. A key
component in many service mesh frameworks, such as Istio [30]
and Linkerd [32], is a proxy named sidecar. The sidecar takes charge
of the network traffic management for a pod, handling tasks such as
policy-based routing, percentage-based traffic splitting, rate limit-
ing, etc. Decoupling network functions into a sidecar allows flexible
traffic management without changing the user’s service logic.

After deploying Istio on Alibaba Cloud to serve customers for
over four years [19], our production data indicates that such a
per-pod sidecar deployment causes the following problems:
• Intrusion:The sidecar sits inside the user pod and runs alongside
the user app. Its presence in the user pod may cause potential
security and stability issues. For example, memory leakage in a
sidecar could crash the user app within the same pod.

• Throughput and latency: The throughput could degrade by
3x~7x and the latency could increase by 3x~7x after adopting the
sidecar [61]. This is because each request needs to be redirected
to the sidecar, which introduces extra processing steps [61], sig-
nificantly increasing the performance overhead [2–4, 11, 61].

• Resource occupation: When loaded with complex network
and security configurations, the sidecar consumes substantial
CPU and memory, which are purchased by users originally for
running their apps. Moreover, maintaining optimal performance
of user services requires that the sidecar’s CPU utilization stay
unsaturated (e.g., < 45%), which exacerbates the resource issue.

• Orchestration: Since each pod has one sidecar, and a cloud
service could have 𝑂 (100𝑘) pods, the overhead of orchestrating
configurations for these sidecars is extremely large [4].
To address these problems, Cilium [23] and SPRIGHT [61] use

eBPF [25] to reduce packet processing latency and CPU consump-
tion. Despite their advantages, the eBPF-based solutions have lim-
ited programmability, making it challenging to support flexible
Layer 7 (L7) processing, such as HTTP. According to our inves-
tigation with customers, 80%~95% of service mesh users need L7
functions. Therefore, both Cilium and SPRIGHT are insufficient
to meet our customers’ demands. Ambient [38] is a pioneering
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solution addressing these issues. It decouples the complex L7 func-
tions from the sidecar to an optional proxy and deploys a per-node
shared proxy for handling L4 functions. Besides, by including En-
voy [26], Cilium can also support L7 processing [12]. However, as
open-source solutions for single-tenant usage, both Ambient and
Cilium with Envoy still have their L4/L7 proxies reside within the
user cluster, leaving the issues of intrusion and resource unresolved.

To address the above issues with incomplete decoupling of side-
cars from the user cluster, we propose Canal Mesh, a cloud-based
sidecar-free multi-tenant service mesh with minimal intrusion, high
performance, low cost, and minor orchestration overhead. Canal
adopts an aggressive decoupling strategy by pulling the service
mesh out of the user cluster and introducing a centralized mesh
gateway in the public cloud to remotely handle these functions.
Through service consolidation and multi-tenancy at the gateway,
the costs of using the service mesh can be greatly reduced. De-
coupling the service mesh from the user cluster frees us from the
constraints imposed by open-source software (e.g., K8s [31]) when
developing new features or optimizing its performance. Addition-
ally, cloud providers can better reuse the existing cloud infra and
leverage years of experiences in multi-tenant cloud management.

However, such an architecture still faces issues in deployment.
For instance, remote service mesh proxies introduce security and
observability concerns. Furthermore, the multi-tenant mesh gate-
way brings about additional issues like service availability, tenant
isolation, noisy neighbor, service elasticity, and extra infra costs.

To ensure functional equivalence after remote deployment, we
deploy a minimal-feature on-node proxy to address security and
observability concerns. In addition, eBPF-based kernel bypass and
remote mTLS acceleration are leveraged for higher performance. To
address the service availability, tenant isolation, and noisy neighbor
issues of the consolidated andmulti-tenant servicemesh, we employ
techniques such as hierarchical failure recovery with replicas across
availability zones (AZs), shuffle sharding, and anomaly detection-
triggered rapid intervention (via scaling/migration/throttling). To
provide sufficient service elasticity for supporting tens of thousands
of stateful services in the mesh gateway, we use root cause analysis
to pinpoint the services with rapid traffic growth and perform pre-
cise scaling of them. To maximally reduce the infra costs for further
user expense saving, we conduct load balancer (LB) disaggregation
for cloud infra reuse and session aggregation via tunneling.

Our major contributions are summarized as follows:
• We propose the world’s first cloud-based multi-tenant service
mesh for production deployment. By deploying service mesh
functions remotely in the public cloud, we address the issues of
intrusion, performance, resource, and orchestration overhead of
Istio and Ambient. Specifically, Canal achieves throughput 12.3x
and 2.3x higher than Istio and Ambient, with latency 1.7x and
1.3x lower. Canal’s CPU consumption is 12x~19x and 4.6x~7.2x
lower than Istio and Ambient. Canal’s configuration completion
time for creating hundreds of pods is 1.5x~2.1x and 1.2x~1.5x
smaller than Istio and Ambient. Canal’s southbound bandwidth
occupation is 9.8x and 4.6x lower than Istio and Ambient.

• We present a production-validated system that addresses the is-
sues due to remote deployment, service consolidation, and multi-
tenancy. It achieves low cost, high availability and elasticity. The
data collected from multiple regions shows that, in the presence
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Figure 1: Per-pod sidecar deployment (e.g., Istio).
of a noisy neighbor, Canal can reduce gateway backend CPU
utilization from 80% to 30% in dozens of seconds with sufficient
resources allocated to the noisy neighbor. In the event of a tenant
being attacked, Canal supports migrating the affected services
to a sandbox within seconds to prevent impact on other tenants.
Additionally, through cloud infra reuse and resource aggregation,
deployment costs have also seen a reduction of 55%~70%.

• We share our experiences of deploying Istio on Alibaba Cloud
for four years and Canal for one year. We observe that with the
consolidated mesh gateway, health check probes significantly
outnumber user app traffic (up to 515x). We reduce the health
checks by 99.6% with multi-level aggregation. We also discuss
various abnormal cases of the mesh gateway in the past, such
as the “query of death” caused by hotspot social media events
and our responses. We delve into deployment issues of technical
solutions, such as eBPF-based kernel bypass and crypto offload-
ing with Intel processors. We share insights into customized
deployment requirements from our customers with high security
demands. We also analyze the overhead and limitations of Canal.

2 BACKGROUND AND MOTIVATION
2.1 Problems of Per-Pod Sidecar
We have identified the following problems with Istio, a service mesh
with per-pod sidecar. Some of these problems have also been dis-
cussed in the open-source and research communities [38, 69]. After
deploying Istio for our customers in production for four years [19],
we observed that some problems escalate at cloud-scale.
High intrusiveness into user pods. As shown in Fig. 1, for per-
pod sidecar deployment, a sidecar is embedded within the pod of
each user app to handle communication tasks. The sidecar and app
coexist, sharing pod resources. To ensure uninterrupted commu-
nication for the app and prevent resource waste from an isolated
sidecar, both the sidecar and app are designed to be created, de-
stroyed, and scaled together, sharing the same lifecycle [5, 37].
However, such a design introduces stability and security issues, e.g.,
memory leakage in the sidecar may cause the app to crash, and
upgrading the sidecar will require a pod restart, disrupting the app.
Performance degradation due to extra steps. As traffic needs
to be processed by the sidecar, outbound traffic from the user app is
redirected to the sidecar (e.g., using iptables [10, 29]), introducing
extra processing steps, as shown in Fig. 21 in the Appendix. On
both the client and server sides, the traffic redirection introduces
two extra times of context switch, memory copy, and protocol stack
processing [61]. Moreover, the sidecar needs to perform complex
L7 tasks such as CPU-intensive TLS crypto, which may also lead to
significant performance degradation [2–4, 11, 61].
Excessive resource consumption. As the sidecar is deployed
within the user pod, it consumes resources initially allocated for
user apps [2, 3, 69]. Our quantitative findings reveal that, when
deploying K8s clusters with Istio in production, the sidecar con-
sumes a considerable amount of resources. As shown in Table 1,
for a major customer with a K8s cluster of 500 nodes and 15k pods,
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Figure 2: Sidecar CPU usage vs
end-to-end latency.
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Figure 3: #Sidecars for a major
customer in our cloud.
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Figure 4: Controller CPUusage
and pod update time.
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Figure 5: CPU usage of Istio
and Ambient.

Table 1: Resource usage of Istio in production.
Cluster size Resource usage of sidecar

Node Pod CPU Memory

500 15k 1500core, 10% 5000GB, 10%
200 8k 1000core, 8% 1200GB, 5%
100 1k 32core, 4% 150GB, 5%
60 2k 400core, 10% 300GB, 6%
60 400 150core, 30% 300GB, 25%

sidecars consume 1500 CPU cores (10% of the total) and 5000GB
memory (10% of the total). In extreme cases, due to the rich func-
tions provided by the sidecar, its CPU and memory usage grow even
higher than that of the app (3x for CPU and 5.54x for memory). This
has led to customer complaints, as the purchased pod resources are
not fully utilized for running their apps. Moreover, we also find
that achieving optimal latency requires resource over-provisioning
for the sidecar. For example, if the CPU utilization exceeds 45%,
the latency doubles, and if the utilization exceeds 75%, the latency
experiences significant spikes (100x~1000x), as shown in Fig. 2.
High control plane orchestration overhead. With the growing
popularity of service mesh, more customers are deploying microser-
vices with it [8]. As shown in Fig. 3, from 2020 to 2022, the number
of sidecars for a major customer nearly doubles. This has signifi-
cantly raised both the cost and the frequency of individual updates,
as the control plane needs to manage all sidecars and any sidecar
configuration change triggers a global pod update.
Southbound bandwidth overhead. A sidecar needs many configura-
tions, such as routing policies and security admissions. However,
individually orchestrating service-dependent configurations for
each sidecar is time-consuming and error-prone. For instance, the
connectivity configuration for a K8s cluster with hundreds of ser-
vices based on their dependencies is complex, requiring manual
orchestration for each sidecar, where any misconfiguration can
affect service continuity. As users may modify the service logic
or scale their apps on demand, such connectivity configuration
occurs from time to time. To reduce complexity, a common practice
is to download the same configuration set to all sidecars. This set
includes all configurations that may take effect, ensuring that any
pod can freely communicate with others if needed.

However, pushing full configurations to all pods at each update
greatly increases southbound bandwidth overhead, because any
update to a sidecar needs to be pushed to all other sidecars, even
if they are irrelevant [16]. Assuming there are 𝑁 pods, the size of
the full configurations for each pod’s sidecar is 𝑂 (𝑁 ), containing
routing and security rules for communicatingwith all other pods. To
update a policy, the total southbound data transmission is𝑂 (𝑁 2) as
pushing the full configurations to all pods is needed. Such overhead
grows rapidly as the K8s cluster expands (while incremental update
would be preferable, Istio currently lacks good support for it). In the
past, we addressed this by dividing a large cluster into smaller ones
(e.g., hundreds of clusters for a customer). However, cross-cluster
communication is unavoidable, causing synchronization issues.

Table 2: Configuration update frequency by cluster.
Cluster size Configuration update

frequency (times/min)Node Pod

3 ∼ 10 100 ∼ 500 1 ∼ 5
30 ∼ 60 700 ∼ 1100 10 ∼ 20
100 ∼ 300 1500 ∼ 3000 40 ∼ 70

In cross-region or cross-cloud deployment of K8s clusters (e.g.,
for on-premises deployment or disaster recovery), high southbound
bandwidth overhead could cause configuration delays or even losses.
Since cross-region/cloud communication is expensive due to the
requirement for VPNs or dedicated lines, most customers choose
not to invest in higher bandwidth. Hence, when managing cross-
region/cloud clusters, updates issued by the controller to the side-
cars in remote locationsmay saturate cross-region/cloud bandwidth,
causing packet delays or losses. In a real case, a customer deployed a
controller hosted on our public cloud to manage their K8s cluster in
their on-premises IDC. The initial cross-region VPN bandwidth pur-
chased was 100Mbps. However, due to the large scale of the cluster
(with thousands of pods), the peak update rate reached 120Mbps. To
eliminate the risk of configuration failures, the customer incurred
additional expenses to upgrade the VPN bandwidth to 1Gbps.
Controller CPU usage and pod update time. The sidecar configuration
process can be divided into two steps: building and then pushing the
updates. As each sidecar requires the full configurations associated
with all pods, the controller CPU usage for building the full config-
urations is proportional to the cluster size, as shown in Fig. 4. After
that, the updates need to be pushed to all sidecars. According to
our measurement in Fig. 4, the pushing is I/O-intensive rather than
CPU-intensive, as the CPU usage for pushing is not significantly
affected by the cluster size, while the update completion (until CPU
usage reaches 0) takes much longer for larger clusters.
Update frequency. Table 2 shows the configuration update frequency
of different clusters in our cloud. The update frequency increases
with the cluster size because larger clusters tend to host a greater
number of services. The cumulative update rate of these services
leads to an overall increase in the update frequency as the cluster
size grows. This further exacerbates the control plane overhead.

2.2 Ambient and its Open Issues
In Sep 2022, Ambient Mesh [38] proposed a novel service mesh
architecture that eliminates per-pod sidecars. Specifically, it splits
the service mesh functions into two layers with different resource-
sharing strategies: a per-node proxy for L4 tasks and a service-level
proxy for L7 tasks shared by all pods of that service. Ambient
addresses the problems of Istio: (1) Ambient no longer intrudes into
user pods, avoiding issues due to the shared lifecycle between the
sidecar and app. (2) Ambient avoids resource overuse and idleness
associated with reserving a dedicated sidecar for each pod. (3) By
offering an optional L7 layer, Ambient reduces the latency of traffic
that does not require complex L7 processing. Besides, in Ambient,
even traffic requires L7 processing, it only needs to pass through
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Table 3: Proportion of users enabling L7 features by region.
L7 L7 routing L7 security

Region1 95% 95% 29%
Region2 93% 93% 33%
Region3 90% 86% 27%
Region4 80% 72% 40%
Region5 88% 80% 53%the intermediate L7 proxy once. (4) Ambient reduces the number of

proxies from 𝑂 (𝑝𝑜𝑑) to 𝑂 (𝑛𝑜𝑑𝑒 + 𝑠𝑒𝑟𝑣𝑖𝑐𝑒), lessening control plane
overhead. However, Ambient still has open issues as follows.
Most users require L7 processing rules. Ambient believes that
reserving a full-featured sidecar for users who do not need L7 func-
tions is overkill [9]. Accordingly, it chooses to retain the commonly
used L4 features (e.g., L4 load balancing, zero-trust network) in a
per-node proxy and offers L7 functionality as an option. However,
based on our observation, the majority of our customers (80%~95%)
configure L7 rules in their service mesh. Specifically, the L7 routing
policy is the most common configuration (72%~95%), as shown in
Table 3. Most customers use L7 routing policies to establish specific
packet processing routes based on URLs, HTTP headers, and mes-
sage content. The operational data reveals that users do want L7
features, but find that the resources consumed by L7 features are
high. Given the costs associated with L7, some users choose to stick
with L4 only. We believe that the key to the widespread adoption
of service mesh lies in reducing the overhead of L7 processing.
Potential risks due to incomplete decoupling. As service mesh
liberates apps from infra management, in large enterprises, the
apps and the mesh are usually managed by different teams. Due
to incomplete decoupling in Ambient, the L4 and L7 proxies (man-
aged by the infra team) are still located in the same cluster of user
apps (managed by the service team), and in some cases, even on
the same node. The coexistence of proxies and apps may cause
resource contention. Besides, since the proxies and apps are in
the same cluster without isolation, they share the same controller
to issue updates, which incurs the risk of misconfiguration. To
avoid misconfiguration, some users even prefer entrusting their
app updates to us.
Substantial room for performance improvement. Compared
with Istio, Ambient achieves lower end-to-end latency by reducing
the L7 proxy processing times from twice to once with an interme-
diate L7 proxy. However, we believe there is still room for further
optimization in the end-to-end processing (as shown in Fig. 10). For
example, we can optimize the way traffic is redirected or conduct
hardware acceleration for complex L7 processing.
Intrusion remains with insufficient sharing. As the L4 and L7
proxies still reside within the K8s cluster, they continue to con-
sume user resources purchased for their apps. Although Ambient
has reduced the overall resource consumption compared to Istio
through traffic aggregation at shared proxies, the resource-sharing
efficiency is not as high as expected (as shown in Fig. 5). Since
Ambient’s L7 proxy is shared across different pods belonging to the
same service, they inevitably experience synchronized peak and
valley workloads, resulting in a reduced peak-shaving effect.
Control plane overhead remains significant. With resource
sharing, Ambient reduces the number of proxies from 𝑂 (𝑝𝑜𝑑) to
𝑂 (𝑛𝑜𝑑𝑒+𝑠𝑒𝑟𝑣𝑖𝑐𝑒). Based on production data, there is approximately
a 2:1 ratio between pods and services, and a 15:1 ratio between pods
and nodes. Accordingly, we can estimate that Ambient needs to
configure approximately 43% fewer proxies compared to Istio. The

number of proxies can be further reduced with more radical sharing
strategies, e.g., having all services share one proxy.
2.3 Design Goals
Non-intrusive service mesh. The service mesh infra should be
as fully decoupled as possible from the user service logic to avoid
the risks due to intrusion, such as undesired service disruption.
Minimal performance overhead. As the service mesh operates
within the end-to-end path, we should minimize its performance
overhead to prevent it from becoming the choke point.
Less resource consumption. Whether the service mesh is in-
jected into the user pod, the user cluster, or hosted by a third party
(e.g., a cloud provider), the cost ultimately falls on the user. To lower
its infra costs, its resource consumption should be reduced.
Control plane overhead mitigation. As the control plane over-
head increases proportionally with the size of a K8s cluster, for K8s
production deployment at scale, it becomes crucial to mitigate such
non-scalable service mesh orchestration overhead.
3 CANAL MESH ARCHITECTURE
3.1 Design Principles
Remote proxy deployment. Istio and Ambient have more or
less intertwined the service mesh proxies with user apps, leading
to many issues. To this end, we decide to adopt an aggressive de-
coupling strategy by deploying these proxies remotely (outside
the user’s K8s cluster) to achieve complete separation from user
apps. Similar to Ambient, by placing the proxies farther away, we
can reduce detour routing of traffic to improve performance. What
distinguishes us from Ambient is that we move the proxies entirely
outside the user cluster. This helps mitigate risks such as controller
misconfiguration with physical isolation. It also ensures that the
resources purchased by users exclusively serve their apps.
Consolidation of services. Istio allocates one sidecar for each
pod in the user cluster. To reduce the control plane overhead of
these per-pod sidecars, Ambient allocates L4 proxies for each node
and L7 proxies for each service with a reduced proxy number. To
further minimize the service mesh orchestration overhead, we aim
to consolidate the per-node and per-service proxies into one. Since
the consolidated proxy can be shared by all pods, it enables efficient
peak shaving to reduce overall resource allocation, eliminating the
need to reserve peak resources for individual proxies.
Multi-tenancy. After being deployed remotely, the consolidated
service mesh proxy no longer consumes resources within the user’s
purchased K8s cluster. However, it still needs to be separately ac-
quired by the user or hosted by a third-party cloud provider. As
a major cloud provider, we naturally explore the idea of sharing
the proxy among multiple tenants, similar to the various cloud
products (e.g., SLB [36], NAT [33], cloud gateway [59, 60]) we have
previously offered, leveraging economies of scale [64] to reduce
tenant expenses. Besides, as we decouple the service mesh from the
K8s cluster, we are no longer constrained by the incomplete multi-
tenancy capabilities of K8s (which is originally designed for single-
tenant usage and provides very limited soft multi-tenancy support
with resource partitioning rather than resource sharing [1, 14]).
Instead, we can leverage years of experiences in public cloud man-
agement to build an efficient multi-tenant service mesh.
3.2 Strawman Architecture and Issues
Based on the above design principles, we propose a strawman ar-
chitecture for a multi-tenant consolidated service mesh. In this
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architecture, each tenant’s apps still run on a K8s cluster (either lo-
cated in the tenant’s on-premises IDC or hosted by a cloud provider).
Their service mesh proxies are consolidated and deployed remotely
in the public cloud, serving apps for all tenants. However, based on
our experiences, such a strawman architecture still faces numerous
deployment issues (Issue #1 stems from remote deployment, while
#2, #3, #4 arise from consolidation and multi-tenancy).
Issue #1: functional equivalence after remote deployment.
Service mesh generally offers three major features: traffic control,
zero-trust network, and observability. However, not all features can
be guaranteed with functional equivalence when deployed remotely.
For example, when the proxy is moved remotely into the public
cloud, the traffic from the user apps to the proxy will inevitably
be exposed to the public cloud environment (which is not trusted
by the user) instead of being confined within the user cluster, no
longer meeting the requirement of zero-trust network. Another
example is that, without the log collected on the user cluster, relying
solely on the log collected by the remote proxy will be insufficient
to precisely pinpoint faults end-to-end. Even if our cloud-based
solution offers superior performance and cost-effectiveness, users
won’t embrace it if essential features are compromised.
Issue #2: isolation between tenants/services. Consolidation and
multi-tenancy lead to a single cloud-based proxy simultaneously
serving a large number of tenants and their services. This signifi-
cantly increases the blast radius in case of proxy failure, affecting
all tenants and services. Furthermore, the shared proxy among all
tenants and services leads to resource contention (the noisy neigh-
bor problem) and unexpected SLA issues. Moreover, since header
address spaces within different tenants’ VPCs may overlap in the
public cloud, a multi-tenant service mesh proxy requires the ability
to differentiate overlapping header addresses across tenants.
Issue #3: stateful resource scaling for concurrent services.
Horizontal scaling is a key capability of cloud to handle dynamic
workloads. In the public cloud, the scaling of stateless devices (e.g.,
cloud gateways for VPC routing [60]) only requires spawning new
backends (VMs or containers), and redirecting the growing traffic
to the new backends. In comparison, the service mesh proxy works
at L4/L7 and is not stateless. During scaling, it needs to maintain
session states to ensure uninterrupted user services. Specifically,
we need to spawn new backends or find existing available backends,
and then migrate newly established sessions to the new or available
backends via the configuration of LBs. In Istio and Ambient, as
the sidecar is allocated per-pod, while the L7 proxy is aggregated
at the service level, each sidecar/L7 proxy only handles a single
service. This makes their scaling strategy rather simple, only re-
quiring migration of the new sessions for the single service to the
newly spawned sidecar/proxy. However, our consolidated proxy
needs to handle configurations for tens of thousands of concurrent
tenant services, each with different groups of backends for fault
isolation. When we observe workload spikes on some backends, a
straightforward solution is to iteratively find suitable backends for
each service on the overloaded backends to hold the spill of traffic.
However, scaling all services blindly is inefficient, leading to lots of
unnecessary operations and delayed reduction in proxy load.
Issue #4: CapEx reduction to save infra costs. For elasticity,
our consolidated service mesh proxy is built upon backend VMs,
which can be elastically created and migrated on physical servers

according to the changing workloads. Therefore, our proxy needs
LBs to distribute traffic evenly across these backends. Specifically,
considering that the backends for different services do not entirely
overlap for fault isolation, we need to assign one LB for each service,
with each LB carrying specific rules. Furthermore, for service re-
silience, we deploy services across multiple AZs. To reduce latency,
we prefer to deploy LBs locally in each AZ to serve backend VMs
in that AZ. However, these LBs incur considerable infra cost.

In addition to LBs, sessions also consume substantial resources [65].
After consolidation, our proxy needs to manage a significant num-
ber of sessions, which are distributed across its backend VMs. How-
ever, session resources for each VM are sourced from the underly-
ing server, constrained by the limited memory of attached Smart-
NICs [43]. Once the proxy is using all available sessions, scaling its
session capacity requires allocating more VMs, incurring additional
infra cost. Additionally, scaling out the proxy for available sessions
reduces resource efficiency, as the proxy’s backend VMs typically
use only 20% of CPU when using 90% of available sessions.

3.3 Refined Architecture
We propose solutions to address the above issues and refine the
strawman architecture accordingly.
Solution #1: functional equivalence via on-node proxy. To
ensure functional equivalence after remote proxy deployment, we
add a lightweight proxy on each user node responsible for minimal
security and observability features. Other features remain deployed
remotely. In addition, we use eBPF instead of iptables to improve
the traffic redirection performance of the proxy, and we reduce the
resource consumption of the proxy by offloading compute-intensive
asymmetric crypto for zero-trust network to dedicated hardware.
Solution #2: multi-pronged approach for high availability.
To ensure the high availability of the consolidated service mesh
proxy, we deploy multiple backends per service within a single
AZ. Service unavailability occurs only when all its backends are
down. Furthermore, for scenarios where all physical devices within
a single AZ may go down due to power outages or other reasons,
we also deploy backends across different AZs for each service to
further improve the availability of the service mesh proxy.

To avoid the issue of a large blast radius in case of proxy failure,
we use shuffle sharding [39] to minimize the overlap of backends
for different services. It ensures that when all backends of a service
are unavailable, other services still have healthy backends to use.

In worst-case scenarios, healthy backends of a service may be
overwhelmed by transient migration of traffic from other failed
backends. To tackle this, we build a multi-indicator monitoring
system and a set of rapid response mechanisms that can quickly
intervene before the service suffers. For normal traffic spikes, we
scale out the backends of the service to ease contention, while in
abnormal situations (e.g., malicious attacks), we isolate the affected
service in a sandbox to prevent impact on other running services.
Solution #3: precise scaling with root cause analysis. To im-
prove inefficient blind resource scaling, we collect utilization data
from each proxy backend and analyze it on the controller. This
enables real-time monitoring of load fluctuations for the top ser-
vices on each backend, allowing us to pinpoint the specific services
causing the backend load increase. Through precise scaling, we can
alleviate backend overload rapidly with minimal scaling operations.
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Figure 6: Canal Mesh architecture.
Solution #4: LB disaggregation and session aggregation. To
reduce the cost associated with LBs, we break down the LB into its
essential functions (i.e., load distribution and session maintenance),
and integrate them separately into the existing infra. Such a cloud
infra reuse strategy allows us to attain functions that traditionally
require deploying dedicated LBs, with almost no additional cost.

To address the imbalance of session and CPU utilization, we
propose session aggregation via tunneling. By aggregating a large
number of sessions into a few tunnels, the session statemaintenance
burden on memory-constrained SmartNICs is alleviated.

In summary, the refined Canal Mesh architecture includes a
centralized mesh gateway, multiple on-node proxies, and a key server,
as shown in Fig. 6. The mesh gateway handles traffic control for
all tenants/services. The on-node proxies and mesh gateway work
jointly to achieve zero-trust network and end-to-end observability.
The multi-tenant shared key server manages asymmetric crypto
offloading for both the on-node proxies and the mesh gateway.

4 SYSTEM IMPLEMENTATION
4.1 On-Node Proxy
4.1.1 Functional equivalence analysis. As mentioned, Canal intro-
duces minimal-feature on-node proxies for functional equivalence.
So, what features have to be kept in the on-node proxy? We assess
the remote deployability of three major service mesh features as
follows, by analyzing whether the input and processing logic can
remain consistent with the previous sidecar-based architecture.
Traffic control. The traffic control of the service mesh includes
route control, load balancing, A/B testing, and canary release [6].
Their inputs are carried by the packets (such as DIP, URL, cookies)
and processed by the forwarding tables in service mesh proxies
configured by the controller (such as stateless FIB, stateful session
table). Since the inputs can be carried by packets to the remote
proxy and the forwarding tables can also be configured remotely,
traffic control equivalent to a sidecar can be deployed remotely.
Zero-trust network. The zero-trust network of the service mesh
includes encryption, authentication, and authorization. Due to dis-
trust in the cloud providers’ networks, the data must be encrypted
before leaving the user node, preventing remote encryption de-
ployment. Authentication involves issuing certificates to each pod.
These certificates, used in the mTLS handshake to verify pod iden-
tity, contain sensitive information, thereby making remote deploy-
ment unsuitable. However, authorization is similar to traffic control,
with input and processing logic being information carried by pack-
ets and traffic admission rules, allowing for remote deployment.
Observability. The observability of the service mesh includes met-
rics collection, logging, and tracing. They depend on instrumenta-
tion at critical points in the traffic path for data tagging, recording,
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Node
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Figure 7: eBPF-based traffic redirection.
and analysis. Deploying observability remotely will impair the end-
to-end data collection capabilities. In fact, it is better to deploy
observability on all critical nodes.

In summary, to reduce intrusion into the user cluster while pre-
serving functional equivalence, we offload most of the service mesh
functions to the remote mesh gateway and maintain lightweight
on-node proxies. Theoretically, the on-node proxies should handle
part of zero-trust network (i.e., encryption and authentication) and
full observability to supplement the functionality missing due to
remote proxy deployment. In practice, similar to other decoupling
solutions like Ambient, we downgrade the observability of the
on-node proxies to L4, while offering rich L7 observability on the
remote mesh gateway. This design choice sacrifices some end-to-
end L7 observability but significantly reduces overhead at the user
cluster. As our on-node proxy is shared by all pods on the node, the
per-user resource occupation and control plane overhead are amor-
tized. Since our on-node proxy handles minimal features without
traffic control, it requires infrequent updates from the controller,
thereby further reducing user intrusiveness and control plane over-
head compared to Istio and Ambient. Finally, we use eBPF and a
dedicated key server for its performance acceleration.
4.1.2 eBPF-based traffic redirection. As the traffic originating from
the user app still needs to be redirected to the on-node proxy, using
iptables-based redirection requires two additional passes through
the kernel stack (details in Fig. 21). To reduce the kernel processing
times for better performance, we adopt eBPF-based redirection
with socket-to-socket transmission (similar to SPRIGHT [61]), as
shown in Fig. 7. However, since eBPF bypasses the kernel, it also
loses some kernel stack features, such as security checks and TCP
optimization. We use a case to show how the lack of kernel stack
features affects eBPF processing and how we address this issue.

When forwarding small packets, kernel bypass with eBPF ex-
hibits unexpectedly lower throughput and consumesmore resources
compared to iptables. Our debugging revealed that eBPF lacks a
small packet aggregation mechanism, resulting in increased re-
source consumption due to a high frequency of context switches
when processing small packets (as shown in Fig. 22 in the Appendix).
In contrast, the kernel protocol stack defaults to enabling the Nagle
Algorithm [57], which aggregates small packets into larger ones, re-
ducing context switch frequency. In response, we implement Nagle
with eBPF, aggregating small packets before eBPF redirection.
4.1.3 Dedicated key server for remote mTLS acceleration.
Issues of local mTLS acceleration. mTLS involves two steps:
asymmetric crypto and symmetric crypto. Asymmetric crypto oc-
curs only during the negotiation phase of the transmission. After
its completion, the computed symmetric key with the private key
is used for all subsequent traffic crypto (i.e., symmetric crypto).
Although the frequency of asymmetric crypto is lower, its resource
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consumption is much higher than symmetric crypto [44]. For perfor-
mance improvement, Intel has introduced hardware-based (QAT [17])
and software-based (AVX-512 [24]) accelerations for asymmetric
crypto. To minimize the intrusiveness of the on-node proxy on user
resources, we opted to offload asymmetric crypto to the local CPU.
However, we encountered issues in production deployment.
Rigid hardware requirement and high cost.As new hardware features,
not all existing Intel CPUs support QAT/AVX-512. In our cloud,
only a small number of VMmodels (<10%) based on new Intel CPUs
support acceleration for asymmetric crypto. Furthermore, these
VMs are more expensive, increasing user expenses. For example,
with all other configurations (e.g., CPU, memory, bandwidth) being
equal, the g7 VM model that additionally supports QAT/AVX-512
is around 30% more expensive than the old g6 model [13].
Unexpected performance degradation.We observed that when the
number of new sessions is low, local mTLS acceleration may result
in increased latency and degraded throughput. Through analysis,
we identified the cause as the batch processing architecture adopted
by the acceleration solution.When the number of incoming sessions
is less than the capacity processed in a single batch, these sessions
have to wait, leading to additional latency. Specific test results and
analysis are presented in the Appendix (see Fig. 25).
Remote mTLS acceleration. To address the above issues, we of-
fload asymmetric crypto acceleration to a remote key server by
changing the local function calls to remote procedure calls. After
finishing asymmetric crypto, the key server returns the symmetric
key to the requesters (both the on-node proxy and the gateway for
mTLS), as shown in Fig. 6. Subsequently, data transfer between the
on-node proxy and the gateway uses the symmetric key for local
crypto, ensuring that information remains secure from unautho-
rized access. Still, we remotely offload only asymmetric crypto due
to its high computational overhead and low frequency. Symmetric
crypto, being frequent and simpler, is kept local to avoid increased
latency and limited performance gain from remote acceleration.
This ensures that traffic is routed remotely only in the negotiation
phase, maximizing benefits with minimal overhead.

Remote mTLS acceleration offers many advantages. First, it does
not rely on the specific VM model at the user end, eliminating the
need for users to purchase newer and more expensive VMs, thus
reducing their expenses. In addition, the shared key server increases
resource utilization, further lowering user expenses. Second, as the
key server simultaneously serves a massive number of services, the
instantaneous arrival of new sessions to the key server is much
higher than the processing quota for a single batch, preventing
performance degradation from processing bubbles.

Maintaining the security of the key server is critical, as if it were
compromised, all the secrets of all the tenants (i.e., the private keys)
would be exposed to the attacker. We store private keys in memory
rather than on the hard drive, ensuring they are flushed after a
restart. This prevents user private keys from being compromised if
the server is physically stolen. Additionally, we encrypt the stored
private keys and only decrypt them when a verified requester initi-
ates an asymmetric crypto request to the key server. The key server
conducts asymmetric crypto and returns the derived symmetric
key to the requester on-the-fly, without keeping the intermediate
plaintext private key obtained during decryption. Through these
measures, we significantly enhance the security of private keys.
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Figure 8: Hierarchical failure recovery.

To prevent the attacker from stealing the symmetric key ob-
tained through asymmetric crypto, communication between the
requesters and the remote key server also needs to be encrypted.
However, performing a new TLS handshake for each request in-
troduces additional latency overhead. Therefore, we choose to use
a pre-established shared channel to encrypt all communication
between each requester and the key server.

To reduce the high latency caused by routing to key servers in
other AZs, we should deploy local key servers within each AZ to
serve local on-node proxies and gateway backends. However, in our
cloud, there might be some AZs (less than 5%) that lack QAT/AVX-
512 CPUs for asymmetric crypto acceleration. In such cases, we will
consider deployment compatibility and fallback to the traditional
software-based asymmetric crypto on old CPU models.

4.2 Cloud Infra for Remote Mesh Gateway
Multi-tenant service mesh. In a single-tenant service mesh like
Istio, packet header fields (e.g., SIP, DIP, URL) distinguish traffic
from different services. However, in a multi-tenant public cloud,
where packet header address spaces may overlap across VPCs,
using the virtual addresses within VPCs is insufficient for service
differentiation across tenants. Generally, VXLAN [56] IDs are used
to differentiate tenant traffic. However, since our mesh gateway
is deployed based on VMs for elasticity above the vSwitch, the
outer VXLAN header is removed at the vSwitch before packets
reach the VMs. This makes it impossible for the mesh gateway to
differentiate tenants based on VXLAN IDs within VMs. To address
this, before striping off the VXLAN header at the vSwitch, we map
it to a globally unique service ID and attach it to the inner header,
enabling the gateway to distinguish tenant services inside VMs.
Hierarchical failure recovery. To handle the substantial amount
of processing workloads from consolidation and multi-tenancy,
the mesh gateway is implemented by multiple backends behind a
virtual IP. To further enhance the availability of each backend, a
backend is composed of multiple replicas, sharing the same set of
configurations (as shown in Fig. 8). In our implementation, a replica
is a VM while a backend is a group of VMs.

In the event of a replica failure, active sessions on that replica will
experience a very short disruption. However, they will be rerouted
and reconstructed on other replicas soon, ensuring that the user
experience will not be significantly affected.

If all replicas of a backend experience a failure, to ensure service
availability, a service’s configuration will be installed to multiple
backends in the same AZ. In Fig. 8, for service A of tenant1 in AZ1,
its configuration is deployed to both Backend1 and Backend2. Only
when both of them fail would it lead to a disruption of service A.

To mitigate the risk of a complete failure of all backends within
an AZ due to sudden events like power outages, we extend the
deployment of a service’s configuration to multiple AZs, which
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further enhances the service availability. For example, in Fig. 8,
Backend3 in AZ2 also carries the configuration for service A.

We have customized the DNS resolution logic to ensure requests
are prioritized to be resolved to available backends within the local
AZ for optimal latency. Only if all backends in the local AZ are
unavailable will the requests be resolved to other AZs.
Inter-service isolation via shuffle sharding. To achieve inter-
service failure isolation, i.e., ensuring that the failure of all backends
of a service does not lead to a complete disruption of other services,
we adopt shuffle sharding [39]. This guarantees that each service
has a unique combination of backends. For instance, in Fig. 8, if
all backends of service A (Backend1, 2, 3) fail due to a “query of
death” [18], service B still has Backend4 alive to handle its requests.
Anomaly detection-triggered rapid intervention. While mech-
anisms like shuffle sharding ensure that a service always has healthy
backends available, traffic migrated from failed backends may tem-
porarily overload healthy ones, causing cascading failures. To han-
dle this, we propose a set of anomaly detection and response mech-
anisms to intervene promptly before large-scale failures occur.
Backend-level alert. When a backend’s water level (e.g., CPU uti-
lization) exceeds a threshold, an alert will be triggered. This is
usually due to a traffic increase from some services. To avoid affect-
ing other services, we must keep the backend water level below a
safety threshold. While rate limiting can address this, it affects user
experience. Instead, our system determines whether the increased
usage is due to an expensive query, an increase in overall workload,
a DDoS attack, or some undetermined cause. If it is a normal situ-
ation, we scale infra capacity on demand to gradually reduce the
water level. Otherwise, we migrate anomalous traffic to a sandbox
quickly, preventing it from continuously affecting other tenants.
Service-level alert. Some users prefer automatic scaling and they
pay based on actual usage when purchasing service mesh resources.
To ensure sufficient resources for these users, we continuously
monitor resource utilization and performance metrics for each
of their services. If any resources are about to be depleted or the
performance becomes worse, we automatically scale their resources
to prevent user experience degradation. Additionally, we will also
check for service-level anomalies, such as unusual frequent scaling
operations, and similarly, migrate the affected services to a sandbox.
Tenant-level alert. If the user’s K8s cluster is also hosted on our
cloud, we monitor its resource usage in real time. When we observe
a sudden surge in resource utilization approaching 100%, wewill dis-
cuss with the user about disabling the service mesh’s auto-scaling
capability and conducting rate limiting on the mesh gateway to
protect the user cluster from being flooded by inbound traffic. Once
the user cluster completes its own scaling process, we will remove
the throttling on the gateway and restore its auto-scaling.
Traffic pattern monitoring. When traffic patterns among services
sharing the same backend exhibit phase synchronization in peaks
and valleys, we consider scattering these services onto different
backends as much as possible; otherwise, it may lead to a sudden
surge in CPU usage, which will affect user SLA. To achieve this,
we periodically sample and monitor the traffic patterns of the top
services in each backend and employ a transparent traffic migration
mechanism to handle the phase synchronization situation.

We explain the workflows of the above rapid intervention and
traffic pattern monitoring in more detail in §6.2 and §6.3.

4.3 Precise Cloud Resource Scaling
In most cases, we address user incremental resource demands
through scaling out. The aforementioned throttling and migration
to the sandbox are reserved only for a few exceptional cases.
Root cause analysis algorithms.To avoid inefficient blind scaling,
we use root cause analysis to pinpoint the services with rapid traffic
growth and perform precise scaling for these services. Specifically,
when the water level of a particular backend exceeds a threshold,
we sample the RPS for requests and identify the top services on this
backend. Then, we observe whether the traffic trends of those top
services align with the backend’s water level trends. If the target
service is pinpointed, a new backend is scaled out for it.

Furthermore, for high availability, a service usually has multiple
backends. Due to load balancing, the traffic growth of a service
may lead to a synchronous rise in water levels across multiple
backends hosting that service. If such a situation occurs, taking
the intersection of services carried by these backends will likely
identify the root cause service. However, due to the varying service
distributions on each backend, an increase in traffic for one service
does not always lead to a simultaneous rise in load across all its
backends. Consequently, the algorithm to intersect across multiple
backends does not always prove effective. In practice, we will run
this algorithm only once at the start to speculate. If it fails to help us
quickly identify the root cause, we will revert to the basic algorithm.
Resource scaling strategies. When a service needs backend scal-
ing, we adhere to the following strategies:

(i) Reuse. If there are still backends within the AZ with low water
levels (e.g., < 20%), we directly extend the service to these backends.

(ii) New. If all backends within the AZ have high water levels,
we deploy a new backend and extend the service to it.

With these strategies, we prioritize utilizing existing backends,
enabling faster resource scaling and lower infra costs.
4.4 Infrastructure Cost Reduction
LB disaggregation. For reducing the CapEx of maintaining per-
service LBs, we reuse the existing infra to achieve equivalent func-
tions of the original LBs. Generally, an LB has two functions: (i) load
distribution to multiple backend VMs (i.e., replicas); (ii) session con-
sistency maintenance. To replace the LBs, we reuse the ECMP [53]
ability of the router in front of the original LBs for load distribution.
If there is no change in the LBs’ replica list, ECMP ensures that
the same flow is always hashed to the same replica with session
consistency. However, when there is a change in the replica list, the
hash base is modified, and session consistency is broken. To address
this, we build a system inspired by Beamer [58], using a redirector
at each replica to verify the router’s hashing decision and conduct
chain-based redirection. Specifically, a fixed-size bucket table in the
redirector manages flow redirection, ensuring new flows go to new
replicas while existing flows continue to their original destinations.
This achieves session consistency during replica changes. As it is
similar to Beamer, we provide a case study in the Appendix (Fig. 26).

To adapt Beamer to our cloud, we make the following modifica-
tions. (i) We increase the length of the replica chain in the bucket
table from the original 2 to a larger value to better support multiple
scale-out/scale-in events in a short period (e.g., consecutive crashes
of multiple replicas due to the query of death). (ii) We maintain per-
service bucket table to record bucket-to-replica mapping, indexed
by the service ID. (iii) We use eBPF to accelerate the redirector.
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Figure 9: Session aggregation and disaggregation.
LB disaggregation brings many advantages. First, the blast radius

is much smaller as one LB is decomposed into multiple redirectors.
Second, the processing latency is lower and more stable for two
reasons: (i) sometimes traffic will be directed to LBs across AZs (e.g.,
due to the unavailability of LBs in local AZ), leading to increased
latency; (ii) compared to LB disaggregation, dedicated LBs add
an extra hop in the overlay, which may correspond to multiple
hops in the underlay based on our implementation, thus increasing
latency. With LB disaggregation, the end-to-end latency is reduced
from 3ms~4.2ms to 1.4ms~2.1ms. Third, the infra cost is significantly
reduced as the VMs for dedicated LBs are no longer neededwhile the
redirectors can reuse the VMs for replicas due to their lightweight
nature (the redirection frequency is low, and its processing cost is
12x~15x smaller than the L7 processing cost of the replica).
Session aggregation. Fig. 9 shows how session aggregation re-
duces the session consumption at the underlying server. Specifically,
we encapsulate a large number of sessions into a few tunnels at the
aggregator based on VXLAN. The outer DIP is set to replica IP and
the outer SIP is set to router IP. When the packets reach the replica,
we use a disaggregator to remove the outer VXLAN header and
let the replica process the original sessions. For implementation,
the aggregator can be integrated into the router if the router is
implemented with programmable chips [46], and the disaggregator
can be implemented on the replica (placed before the redirector).

Since a replica typically occupies multiple CPU cores, it is prefer-
able to balance tunnel loads across these cores. To achieve this, we
aggregate sessions into multiple tunnels by setting different outer
SPorts. The vSwitch then hashes these tunnels to multiple cores. By
setting an appropriate number of tunnels (e.g., 10 times the number
of cores), we can distribute the tunnel loads evenly across all cores.
5 EVALUATION
5.1 Experimental Settings
Small-scale testbed. As Ambient is still under rapid iteration, we
have not deployed it widely in production. To fairly compare Istio,
Ambient, and Canal, we set up a small-scale testbed to observe how
Canal addresses the issues in §2 (the versions of Istio and Ambient
in evaluation are [15] and [7], respectively). The testbed has an
Intel Xeon 8269CY CPU with 8 cores 16 threads, and 64GB memory.
The K8s resources include two worker nodes (for apps) and one
master node (for the controller). Each worker node has 15 pods.
The number of hosted services is 3, thus there are 3 L7 proxies for
Ambient. The results in §5.2, §5.3 and §5.4 are from the testbed.
Production deployment. Canal has been deployed in Alibaba
Cloud since 2023 and is made available to beta users. The results
in §5.5 and §5.6 are collected from production cloud regions. The
mesh gateway in these cloud regions is made up of thousands of
VMs, handling an average of millions of RPS.
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5.2 Performance
5.2.1 Performance improvement with key server and eBPF. With
crypto offloading to the key server, the throughput is improved
by 1.6x~1.8x (Fig. 27), while the latency is reduced by 53%~60%
(Fig. 28). With eBPF-based redirection, the throughput is improved
by 1.3x~2.3x (Fig. 29), while the latency is reduced by 55%~66%
(Fig. 30). Detailed experimental results are shown in the Appendix.
5.2.2 Comparison with Istio and Ambient. We measure the latency
of three service mesh solutions under light workloads, then adjust
the workloads to evaluate their throughput with acceptable latency.
Latency under light workloads. Fig. 10 shows the end-to-end
latency of different solutions under light workloads. Specifically,
we use 1 thread and 1 connection to send 1 request per second and
repeat this 100 times. “No service mesh” is the latency when the
client and server are directly connected without L7 processing as
the baseline. The latency of Canal is the closest to the “No service
mesh” baseline, and is 1.7x and 1.3x lower than that of Istio and
Ambient, demonstrating that Canal can provide L7 functions to
users withminimal overhead. Istio has the highest latency because it
requires traversal through two L7 processing nodes, while Ambient
and Canal only require traversal through one L7 node.
Latency under changing workloads. Fig. 11 shows the P99 la-
tency under different workloads. In this experiment, we use 1 thread
and 100 connections to send requests at varying RPS. When the
workloads are within the processing capability, the latency remains
stable. Once the CPUs are saturated, the latency increases sharply.
Canal lowers the CPU usage and thus increases the throughput (i.e.,
the maximum RPS before latency spikes), which is 12.3x and 2.3x
higher than that of Istio and Ambient, respectively.
5.3 Resource Consumption
Resource usage saving with key server. Fig. 12 shows the reduc-
tion in CPU utilization of the on-node proxy achieved through local
CPU offloading and remote key server offloading, both using Intel
AVX-512 for crypto acceleration. The local and remote offloading
can reduce CPU utilization by 43%~70% and 62%~70%, respectively,
leaving more resources to the user apps.
Resource usage comparison with Istio and Ambient. Fig. 13
shows the CPU core usage (4 cores in total) under different work-
loads. Canal (total) and Canal (proxy) represent CPU core usage for
Canal with and without the mesh gateway, respectively. For Am-
bient, we allocate 2 cores for the L4 proxies and 2 cores for the L7
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proxies. For Canal, we allocate 2 cores for the on-node proxies and 2
cores for the gateway. As shown in Fig. 13, Canal consumes 12x~19x
and 4.6x~7.2x less user CPU resources than Istio and Ambient.
5.4 Control Plane Overhead
Configuration completion time. Fig. 14 shows the completion
time for creating multiple pods in a K8s cluster through an API call.
By recording the time taken before successful pings to the pods, we
obtain the P90 completion time. The configuration time of Canal is
1.5x~2.1x and 1.2~1.5x lower than Istio and Ambient. For Canal, the
majority of configurations only need to be pushed to the central-
ized mesh gateway. In contrast, Istio requires to configure per-pod
sidecars, while Ambient requires to configure L4/L7 proxies.
Southbound bandwidth overhead. Fig. 15 shows the southbound
bandwidth occupation during an update of routing policies. Since
Canal only needs to configure the mesh gateway, its bandwidth
usage is the lowest. Ambient, however, requires the configuration
of multiple L7 and L4 proxies, resulting in a higher bandwidth
consumption (4.6x). Since Istio needs to configure per-pod sidecars,
its bandwidth overhead is the highest, achieving 9.8x that of Canal.
5.5 Performance on Cloud Infra
Noisy neighbor isolation. To demonstrate Canal’s service isola-
tion capability, we retrieve a historical case illustrating a typical
scenario where a sudden surge in traffic for a service led to an
elevated backend load beyond the safety threshold. Subsequently,
we monitored the changes over time in RPS and latency for the top
services hosted on the same backend, as well as the backend CPU
utilization, as shown in Fig. 16. At the 50s, a backend-level CPU
utilization alert was triggered. After that, through precise resource
scaling (employing Reuse for responsiveness), the CPU utilization
rapidly decreased below the safety threshold. During the entire pro-
cess, neither the RPS (Fig. 16(a)) nor the latency (Fig. 16(b)) of other
services suffered any degradation. Furthermore, the HTTP error
codes for all services continuously remained at 0, indicating that
we successfully isolated the “noisy neighbor” from other services.
Resource scaling. Fig. 17 and Table 4 show the time from executing
the scaling operation to the reduction of utilization below the safety
threshold for both scaling strategies (Reuse and New) discussed in
§4.3. In our experiments, the P50 time of Reuse and New is about 55s
and 17min. The New takes much longer time due to initialization
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Figure 17: CDF of completion time of Reuse and New.

Table 4: Examples of reusing existing backend (Reuse) and
creating new backend (New) in a cloud region.

Reuse New
Traffic increase 2024-01-01 10:00:10 2023-12-20 19:01:45
Exceed threshold 2024-01-01 10:05:24 2023-12-20 19:19:20
Execute Reuse/New 2024-01-01 10:06:48 2023-12-20 19:20:49
Finish Reuse/New 2024-01-01 10:07:11 2023-12-20 19:38:19
Below threshold 2024-01-01 10:08:02 2023-12-20 19:39:21

tasks, such as VM creation, image loading, network setup, and
resource registration with Canal’s resource pool.

Fig. 18 depicts the daily occurrences of scaling through the Reuse
and New operations over a month. Although the New operation
takes longer, it is invoked far less frequently than the Reuse. More-
over, to reduce the waiting time of applying New, we often execute
it in advance. This is because, it usually takes several minutes to
tens of minutes to consume all backend resources, providing suffi-
cient time to invoke New in advance. Additionally, users typically
communicate with us before launching large-scale resource scaling.
Shuffle sharding for failure isolation. Fig. 19 shows the effect
of shuffle sharding on the backends for top services. The figure
illustrates that there is no complete overlap among the backend
combinations of services, ensuring that a failure in one service does
not lead to a complete outage of others.
High availability for a single service. Furthermore, Fig. 19 also
shows each service has multiple backends, which enhances the
service-level high availability.
Daily operational data. Fig. 20 shows the trend of RPS and HTTP
error codes during Canal’s daily operations, including service mi-
gration, Canal version update, and resource scaling (i.e., Reuse and
New). In Fig. 20, the error codes generally follow the same trend
as RPS, and the above operations have not caused any spikes in
error codes, suggesting that no faults have occurred during these
operations. To minimize the impact of any potential faults, the ver-
sion update is scheduled during the night. The version update takes
about 4 hours as it involves rolling upgrades of machines. The time
for other operations is short, ranging from seconds to minutes.

Based on our experiences, most error codes originate from the
user side. For example, a user’s service might generate a large
number of error codes (e.g., traffic exceeding their quota), but if
their service is not significantly affected, they may choose to ignore
them (e.g., unwilling to pay for a scale-out). In another case, a user
intentionally designs programs to return error codes by default.
Therefore, as long as there is no sharp increase in error codes, it
suggests that our operations have not made any negative impact.
5.6 Deployment Costs
Cost reduction through embedded redirectors. By embedding
the redirectors into replicas, we no longer need to maintain separate
LBs, reducing the cost of acquiring dedicated cloud resources (e.g.,
VMs as LB instances) by 32%~48%, according to our measurement
of 4 cloud regions deploying redirectors (as shown in Table 5).

10



Canal Mesh: A Cloud-Scale Sidecar-Free Multi-Tenant Service Mesh Architecture ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

0 10 20 30
Day (2023/11/20 - 2023/12/20)

0

2

4

6

T
im

e
s

Reuse

New

Figure 18: Occurrences of Reuse
and New in a cloud region.

1 2 3 4 5 6 7 8 9 10

Service

0

5

10

15

20

B
a
c
k
e
n
d
 I
D

Figure 19: Backend combinations
from shuffle sharding.

0 24 48 72

Time (h) (2023/11/27 00:00 - 2023/11/30 00:00)

n

R
P

S
 (

M
)

m×10

H
T

T
P

 E
rr

o
r 

C
o
d
e
s
 (

K
/s

)

UpdateMigration ReuseNew

RPS Error

Figure 20: Daily operational data
in a cloud region.

Table 5: Cost reduction by redirector and tunneling.
Redirector Tunneling Redirector&Tunneling

Region1 47.5% 32.2% 64.4%
Region2 45.1% 45.3% 69.9%
Region3 32.1% 33.6% 54.9%
Region4 36.7% 36.5% 59.9%

Cost reduction through tunneling. By aggregating sessions
into tunnels after deploying redirectors, cloud resource saving can
further reach 55%~70% (see Table 5). Note that although the number
of sessions can decrease from hundreds of thousands to just a
few, this does not mean a proportional reduction in the number of
required VMs. This is because, even when sessions are no longer a
bottleneck, we still need to provide an adequate number of VMs to
meet other resource requirements, such as CPU and memory.
6 EXPERIENCES
6.1 Excessive Health Check Handling
Health check probes outnumber user app traffic. To monitor
the availability of user apps in the K8s cluster, each service mesh
proxy needs to perform periodical health checks with probe packets.
After deploying Canal in production, we received user complaints
about their apps receiving excessive health checks from our mesh
gateway. As shown in Table 6, the health check traffic far exceeds
the app traffic, reaching up to 515x!

Table 6: Excessive health checks vs app traffic.
Case1 Case2 Case3 Case4 Case5

App traffic (RPS) 21 4221 385 496 9224
Health checks (RPS) 10817 52122 12960 22107 19014

After investigation, we found that the centralized gateway causes
redundant health checks. Specifically, due to a user’s service being
configured on multiple backends of the gateway, with each backend
containing multiple replicas and each replica having multiple CPU
cores, conducting health checks from each core for the user apps
associated with the service generates redundant traffic. Besides, in
a cluster, apps in a pod may belong to different services, causing
health checks for these services to converge on the same pod.
Health check proxy with multi-level aggregation. To reduce
the redundancy, at the service level, when the controller detects
overlapping apps associated with different services configured on
the same gateway backend, we aggregate their health checks. For
example, if service A and B are configured on a backend and the apps
associated with them are (1, 2, 3) and (3, 4), we apply the aggregated
health checks to (1, 2, 3, 4) on that backend. If A and B are configured
on different backends, we do not aggregate, as synchronizing health
check results between backends incurs communication overhead.

At the CPU core level, we elect one core on behalf of others to
send health checks to apps, while the remaining cores inquire about
the health check results from this core.

At the replica level, we take a similar approach. However, as the
number of replicas for a service can be substantial due to scale-out,
to avoid large overhead due to numerous replicas querying the

health check results from a single replica, we spawn a dedicated
health check proxy to handle health checks at the replica level.

Table 7: Health check reduction by aggregation.
Base Service- Core- Replica- Reduction

Case1 10817 9344 584 18 99.83%
Case2 52122 46592 3328 104 99.8%
Case3 12960 12960 1620 50 99.61%
Case4 22107 13464 1122 62 99.72%
Case5 19014 18351 1624 49 99.74%

Less health checks than per-pod sidecar. Table 7 shows the step-
by-step health check reduction by multi-level aggregation with a
minimal decrease of 99.6%. In Istio, each user app receives health
checks initiated by all sidecars, whereas in Canal, the health check
proxy aggregates the health checks from 𝑂 (𝑠𝑖𝑑𝑒𝑐𝑎𝑟 ) to 𝑂 (1).
6.2 Exception Handling in Production
Exception handling mechanisms.We use migration and throt-
tling to address exceptional cases, such as DDoS attacks.
Migration (for mesh gateway protection).Migration is leveraged to
prevent a user’s abnormal service growth, which could exhaust
resources in our mesh gateway and impact other tenants. As migra-
tion is to protect our infra, the specific strategy, e.g., either lossless
or lossy migration, is decided entirely by the cloud provider based
on the rate of user traffic and the water level of gateway clusters.
Lossy migration resets all sessions and reconstructs them in a sand-
box within seconds, while lossless migration migrates new sessions
to a sandbox, allowing existing sessions to continue serving users
seamlessly. Completion of lossless migration depends on the time-
out of existing flows, with a median time of approximately 20min.
Throttling (for user app protection). Throttling is leveraged to protect
the user apps by limiting the traffic that goes through the gateway.
To reduce ineffective CPU usage, we prioritize early rate limiting,
dropping packets that exceed the quota when they reach the redi-
rector, rather than waiting until they reach the application layer.
Since throttling user traffic may go against the SLA commitments
we’ve made, and throttling brings a persistent service impact (un-
like the short service disruption of lossy migration), the intensity
and duration of throttling require early communication with users.
Case #1: Lossy migration.When abnormal traffic raises our gate-
way cluster’s water level rapidly, a lossy sandbox migration is neces-
sary. In the past, there have been cases where user traffic suddenly
saturated 80% of the backend sessions, triggering a backend-level
alert. Subsequent analysis revealed signs of an attack — #TCP ses-
sions surged without a corresponding increase in RPS. In response,
we conducted a lossy migration. After communicating with our
customer, it was confirmed that they were indeed under attack.
Case #2: Lossless migration.When detecting abnormal traffic but
the backend remains stable, a lossless migration is recommended.
For instance, there have been cases where user traffic slowly in-
creased over hours. As they had purchased auto-scaling services,
we kept scaling resources in the gateway. However, such unusual
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scaling, differing from their historical usage pattern, prompted us
to confirm with the user whether the traffic rise was due to normal
service. Upon user self-check, an attack was discovered.
Case #3: Traffic throttling. Throttling often occurs with social
media customers due to unexpected surges in traffic with hotspot
events. The rapid influx of traffic in a short time can easily overload
a customer’s K8s cluster. When requests accumulate, it may lead
to a query of death of their resources and a global service outage.
Although the customer’s K8s cluster supports auto-scaling, the
elasticity is limited by the resource creation and configuration
speed, which cannot keep up with the sudden growth of traffic. To
address this, we protect customer apps by throttling at the mesh
gateway after confirming with them. Subsequently, we gradually
relax the throttling based on the capacity of customer resource
scaling. Without throttling, if the processing capacity of customer
apps is less than the traffic, a service outage will inevitably occur.

Besides, we have observed an interesting phenomenon where
outages caused by hotspot events can spread across platforms in
a short time. When social media end users cannot access content
on one platform, they are likely to migrate to others, potentially
causing eventual unavailability of all platforms (another query of
death). Through throttling, we ensure platform access for a portion
of users first, thereby reducing cross-platform traffic and reserving
valuable time for resource scaling on other platforms.
6.3 Traffic Migration for In-Phase Services
When we discover in-phase services within a backend based on
traffic patternmonitoring, we need to scatter these in-phase services
onto other backends with out-of-phase traffic patterns. To achieve
this, we need to (i) select the services to migrate and (ii) select the
backends for landing these services.
Which services to migrate? To select the appropriate services for
migration, we adhere to the following two principles: (i) prioritize
services with higher RPS for migration; (ii) prioritize services with
fewer long-lasting sessions for migration. The first principle aims
to minimize churn caused by reconfiguration and redeployment of
services. Selecting services with higher RPS allows us to migrate
fewer services overall. The second principle ensures that the se-
lected services can transition to the new backends more quickly,
reducing the overhead of maintaining states and configurations
across both new and original backends. Note that when counting
the RPS, HTTPS sessions should be weighted three times higher
than HTTP sessions due to our observation showing that HTTPS
requests consume approximately three times more resources.
Which backends to land the services?We select target backends
based on backend locations and traffic patterns. The basic principle
is to choose backends within the same AZ that have complementary
traffic patterns to the selected services. Choosing the same AZ en-
sures consistent performance before and after migration. Choosing
complementary patterns is to minimize the risk of exceeding the
target backends’ safety threshold after service migration and to
achieve a better balance in resource utilization in our cloud.

Specifically, we first obtain the half-width at half-maximum
(HWHM) time period of the selected service within 24 hours. Next,
we conduct ten samplings at fixed intervals during the HWHM
period to obtain sampling points. Then, we sample other backends
in the same AZ at the same sampling points, and the set of sampling
values is recorded as𝐺 . Subsequently, we identify the five backends

with the lowest sum of sampling values in 𝐺 . We then sample the
RPS of the five selected backends over the past 24 hours, and the set
of sampling values is recorded as𝐺 ′. Finally, we select the backends
with the lowest sum of sampling values in𝐺 ′ as the target backends.

6.4 Proof for Absence of Failure
As a cloud provider, we receive complaints from tenants when issues
arise with their hosted services. However, troubleshooting these
service-level issues is complex as they are closely related to the
availability of the underlay network, the overlay network, the mesh
gateway, and the hosted services. To ensure the absence of failure
in our cloud infra, we deploy diverse app instances (like WebSocket,
HTTP, HTTPS, gRPC, etc.) across all AZs, periodically sending full-
mesh probing traffic. This strategy enables us to troubleshoot and
prove our innocence by assessing the connectivity and performance
between different service types, particularly focusing on L7 service
anomalies. This distinguishes our approach from other telemetry
solutions focusing primarily on network connectivity [52, 67].

7 RELATEDWORK
The open-source community has proposed diverse implementations
of service mesh, such as Istio [30], Linkerd [32], Cilium [23], Cilium
with Envoy [12], Ambient [38], etc, which can be categorized into
per-pod sidecar and sidecar-less solutions. To address per-pod side-
car’s issues, Cilium and Ambient adopt a sidecar-less architecture.
Specifically, Ambient achieves this by sharing sidecar functions at
the node level and service level [38], while Cilium uses eBPF to
embed part of the sidecar functions into the kernel [23] and de-
ploys complex L7 functions optionally with an on-node proxy [12].
However, these sidecar-less solutions still retain heavy proxies on
user nodes, leading to numerous open issues as discussed in §2.2.

Most research studies focus on harnessing service mesh for vari-
ous tasks [41, 42, 48, 49, 54, 66]. Only a few focus on service mesh
implementation. Muppet [50] leverages synthesis to address multi-
party configuration with service mesh. SPRIGHT [61] adopts eBPF
and shared memory to improve service mesh performance. How-
ever, eBPF lacks support for flexible L7 function implementation.
Additionally, the requirement for pods within the same service
function chain to be deployed on the same node using shared mem-
ory restricts the elasticity and scalability of its deployment. Ser-
viceRouter [63] introduces Meta’s experiences with service mesh.
However, 99% of its traffic is still processed using a library-based
solution, with only 1% of the traffic handled with service mesh.

8 CONCLUSION
This paper discusses issues in large-scale service mesh deployment
from a cloud provider’s perspective. To alleviate the intrusion of
deploying sidecar proxies within user resources and achieve more
efficient resource utilization, we propose Canal Mesh, a sidecar-free
multi-tenant service mesh architecture. The centralized architec-
ture reduces management overhead while maintaining security
and observability capabilities. Hosted on the public cloud, Canal
maximizes resource utilization, and transparently addresses the
high availability and elasticity needs in service mesh deployment.
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A OVERHEAD ANALYSIS OF CANAL MESH
Per-node vs per-pod. Compared to sidecars running in each pod,
our on-node proxy ensures observability and security capabilities
with almost no compromise, but it does require some additional
work. For example, to track the inbound and outbound traffic for
each pod, a per-pod sidecar can directly perform statistics without
additionally labeling the traffic. However, our on-node proxy needs
to differentiate traffic from different pods by introducing additional
labels for fine-grained statistics at the pod level.
Key server. Compared to local CPU offloading, offloading asym-
metric crypto remotely to a key server will increase the blast radius.
To address this, in the event of a failure in the remote key server in
the local AZ, we will fallback to using the local CPU as a backup
for asymmetric crypto offloading.

Compared to local CPU offloading, using a remote key server
also introduces additional transmission latency within an AZ. To
evaluate this, we measure the request completion time for local
offloading, remote offloading and no offloading (i.e., software-based
asymmetric crypto on old CPU models). As shown in Fig. 23, the
completion time for remote offloading (including the RTT between
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Figure 24: Distribution of end-to-end latency in a production
K8s cluster.

the requester and the key server) remains relatively stable at around
1.7ms, regardless of workload changes. The completion times for
local offloading and no offloading are 1ms and 2ms, respectively. It
shows that remote offloading is faster than no offloading, indicat-
ing that the added RTT is outweighed by the time saved through
asymmetric crypto offloading. Compared to local offloading, remote
offloading introduces only 0.7ms additional latency.

To further analyze the latency impact introduced by remote
offloading with the key server, we measure the distribution of end-
to-end latency within a production K8s cluster (with mesh gateway),
as shown in Fig. 24. It can be observed that the majority of latencies
fall within the range of 40~50ms and 100~200ms. This indicates that,
in most cases, the 0.7ms latency introduced by the key server is
negligible compared to the processing latencies of user apps.
Hairpin routing to mesh gateway. In Canal Mesh, we enforce
all traffic to detour through the remote centralized mesh gateway
(akin to hairpin routing), even for communication between two
neighboring pods within the same node. Despite sounding costly,
this approach does not impose significant extra overhead on the
service chain processing of user apps. The reason is that the RTT
within the same AZ (e.g., less than 1ms) is much lower than the
average request processing time at the application layer within
the user pod (e.g., 40-200ms) as shown in Fig. 24. Therefore, the
additional transmission delay caused by hairpin routing does not
noticeably increase the request processing time.
LB disaggregation. When using redirectors to replace an LB,
longer replica chains in the bucket table (e.g., greater than 2) may
result in multiple redirections and potential latency overhead. How-
ever, our analysis indicates that this latency overhead is not sig-
nificant for several reasons. Firstly, based on our production data,
multiple consecutive scale-out/scale-in events within a short pe-
riod occur infrequently. Secondly, even in cases where multiple
redirections occur, they are typically short-lived. Our observation
shows that most traffic consists of transient flows, which establish
new sessions with higher-priority backends after a timeout, thereby
reducing the need for continued redirections. Lastly, introducing an
additional hop does not substantially increase end-to-end latency,
given that RTTs within an AZ are generally less than 1ms.
Session aggregation. Addressing session resource shortages via
session aggregation involves several overheads, including packet
encapsulation/decapsulation, increased blast radius, additional op-
erational complexity, and the risk of exceeding the MTU limit.
Specifically, encapsulation can be achieved at line rate with Tofino,
resulting in minimal overhead. However, decapsulation needs to be
performed internally in the VM, consuming additional CPU cycles.
Based on our measurement, we find that whether or not to per-
form additional decapsulation has an insignificant impact on CPU
utilization, which we consider acceptable. When multiple sessions
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are aggregated into one, any exception affecting the aggregated
session will impact all user traffic within that session, unavoidably
increasing the blast radius. Before encapsulation into the tunnel,
identifying the root cause of a faulty session is straightforward.
However, after encapsulation, it becomes necessary to decapsulate
and enter the tunnel to pinpoint the source of the fault, thus in-
creasing the operational complexity. Furthermore, appending an
additional VXLAN header to packets may cause them to exceed the
MTU. To mitigate this issue, we adjusted the device’s MTU limit.

B SPECIAL DEPLOYMENT SCENARIOS
Cloud-based keyless service mesh. Some customers have ex-
tremely high security requirements (such as financial customers)
and do not wish to entrust their private keys (used in asymmetric
crypto) to third parties [45]. However, when deploying a service
mesh based on Istio or Ambient, it is necessary to provide the
private keys to the mesh admin to enable mTLS crypto based on
sidecars/proxies. If the service mesh based on Istio or Ambient is
deployed on the public cloud, the private keys have to be given
to the cloud providers. However, this is not acceptable to those
customers with high security concerns.

By contrast, our remote key server architecture supports the
keyless TLS mode [45] due to security functionality decoupling
from sidecars/proxies. This allows users to enjoy the convenience
of cloud-based service mesh without having to entrust their pri-
vate keys to cloud providers. Specifically, users can choose not to
use our multi-tenant shared key server to store their private keys.
Instead, they can opt for deploying a local key server in their own
on-premises data centers to store the private keys and handle asym-
metric crypto requests from the cloud. Such a keyless service mesh
eliminates the risk of exposing private keys.
Cloud-based proxyless service mesh.We have limited the intru-
sion into user nodes by using the remote centralized mesh gateway
and remote asymmetric crypto offloading. However, even such lim-
ited intrusion is not acceptable for some customers whose resource
access is entirely blocked to third parties due to security concerns.
To address this issue, we propose a cloud-based proxyless service
mesh that completely eliminates the on-node proxy.

With the proxyless mode, we need an alternative method to redi-
rect traffic from the user cluster to our mesh gateway. In most cases,
as the cloud provider, we can access the user’s DNS servers. With
the user’s permission, the cloud provider can configure the DNS
servers to redirect service traffic to the remote gateway. However,
because there is no on-node proxy to collaborate with the mesh
gateway on zero-trust network capabilities and data collection for
observability, these functions become partially usable.

With the proxyless mode, we recommend to do the authentica-
tion through the virtual network interfaces (i.e., ENIs [35]) attached
to the containers. Most virtual network interfaces provided by cloud
providers have the authentication and verification mechanisms em-
bedded to ensure the traffic goes through the network interfaces
cannot be forged or tampered with. However, this authentication
scheme has two issues. First, we need to create a virtual network in-
terface for every container. Because each interface requires memory
resources on the node and IP addresses allocated from the network,
as the number of containers grows, the maximum limit of interfaces
is easily hit. Second, we need a protection mechanism to ensure that
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concurrent connections with AVX-512.
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the virtual network interfaces are only accessed by the attached
containers, a feature not well supported by popular open-source
solutions like Flannel [27] and Calico [22] in K8s.

With the proxyless mode, encryption has to switch from a fully
managed mode to a semi-managed mode. If users manage their
own certificates, the encryption can be done equivalently as the
the on-node proxy mode. Users can also rely on the TLS encryption
services of the mesh gateway, if the cloud providers are trusted.

With the proxyless mode, traffic collection, labeling and sam-
pling cannot be done on the user nodes. But those actions are still
taken at the mesh gateway. As a result, we only provide the partial
observability capabilities on the traffic at the mesh gateway.

C ADDITIONAL FIGURES
Performance degradation in mTLS acceleration. After offload-
ing asymmetric crypto locally using AVX-512, we had an intriguing
discovery: in certain cases, the throughput and latency become
unexpectedly worse than without offloading. We conducted ex-
periments to evaluate the performance under different numbers of
newly established concurrent connections, as depicted in Fig. 25. As
shown in the figure, there is a significant performance degradation
when the number of new concurrent connections is below 8.

After careful analysis, we found that the performance degrada-
tion is due to the batch processing nature of AVX-512. When the
buffer of AVX-512 is not fully occupied, it causes a wait time until
a timeout occurs. The wait time is configurable with a minimum
threshold of 1ms. The buffer size in AVX-512 is 512 bits, allowing for
processing of 8 crypto operations in a batch. Therefore, when the
number of concurrent connections is less than 8, the performance
of AVX-512 will degrade.
Session consistency maintenance with redirector. We use a
case to show, when a replica is about to go offline, how the redirector
ensures that the replica no longer processes new sessions while
continues to serve old sessions.
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As shown in Fig. 26, before replica IP2 is about to go offline, the
flow 5-tuple1 is hashed by the router in the front through ECMP to
replica IP2. After IP2 goes offline, the router will statelessly hash the
traffic to the remaining replicas (by hashing 5-tuple mod #replicas).
However, this may cause the traffic that previously went to IP2 to be
hashed to different replicas, which disrupts the session consistency
of the traffic with existing flow records on IP2.

To solve this problem, we follow Beamer’s idea [58] by adding a
redirector to each replica, which stores a bucket table with a fixed
number of entries. The bucket tables on different replicas store the
same entries, updated by a centralized controller. A fixed number
of entries in each bucket table ensures that packets with the same
5-tuple (i.e., belonging to the same flow) will be hashed to the same
bucket entry (by hashing 5-tuple mod #buckets). Each bucket entry
contains a replica chain, sorted by priority. When replica IP2 is
about to go offline, we will add a higher priority available replica in
front of IP2 in all bucket entries containing IP2 in the bucket table
(such as IP3 in bucket1 and IP1 in bucket2).

When any packet (including the first packet of a new flow),
reaches a replica based on the router’s hashing result, it first queries
the replica chain in the redirector of that replica, rather than being
processed directly at the replica. For example, if 5-tuple1 is initially
hashed to bucket1, the replica chain in bucket1 is then checked.
If IP3 has the highest priority at that moment, the packet needs
to be redirected to IP3. When this packet reaches IP3, because the
kernel stack lookup does not find the flow stored at IP3 for 5-tuple1,
it continues to search in the replica chain for the next priority
replica, which is IP2. Therefore, the existing flow will ultimately be
redirected to IP2, and finding its flow record in IP2’s kernel stack.

If this packet is a SYN packet (i.e., the first packet of a new flow),
it will directly choose to insert at IP3. In other words, the new flow
will be placed on the replica with highest priority (i.e., the newly
available replica) in its hash bucket (i.e., IP3 in bucket1). In the
future, subsequent packets of this new flow will also be hashed to
bucket1 and then redirected to IP3. However, because these packets
are not SYN packets and there is already a flow record existing in
the kernel stack, they will be processed locally at IP3. When the
flows in replica IP2 have all aged, IP2 can be safely taken offline.

This approach ensures that replicas preparing to go offline will
continue to handle previously established sessions correctly but
will not handle the establishment of new sessions.
Performance improvement with key server. To evaluate the
impact of crypto offloading on latency and throughput, we conduct
experiments using wrk [40] to measure the throughput and P90
latency of HTTPs short flows [62].
Throughput. Fig. 27 illustrates the improvement in throughput
through offloading when providing different CPU cores to the node
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Figure 29: Throughput im-
provement with eBPF.
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proxy. As shown in the figure, the throughput with crypto offload-
ing is approximately 1.6x~1.8x times than that of without offloading.
Latency. Fig. 28 illustrates the decrease in latency with crypto of-
floading. As shown in the figure, as the RPS increases, the rate of
latency reduction becomes higher, ranging from 53% to 60%. The
reason behind this is that as the RPS increases, the resources of the
on-node proxy become increasingly exhausted, resulting in a sharp
increase in processing latency.
Performance improvement with eBPF. As mentioned in §4.1.2,
the packet size may have an impact on the throughput and latency
when using eBPF-based redirection. To validate the feasibility of
our proposed approach, we leverage Netperf [34] to evaluate the
performance of redirecting the traffic to the per-node proxy with
eBPF and iptables, under different packet sizes.
Throughput. Fig. 29 shows the throughput improvement with eBPF-
based redirection. Both iptables-based and eBPF-based redirection
enable the Nagle algorithm for aggregating small packets. As shown
in the figure, the throughput with eBPF increases significantly for
both small and large packets, compared to iptables-based redirec-
tion. The throughput increases by approximately 2 times for packet
sizes larger than 1500 bytes. For smaller packets (e.g., 500 bytes),
the throughput with eBPF is approximately 1.3 times higher. This
indicates that the throughput improvement is more significant for
larger packets, as there is no need for packet aggregation.
Latency. As shown in Fig. 30, it is evident that eBPF also introduces
a significant improvement in latency. The latency of iptables-based
redirection is approximately 1.5x~1.8x compared to that of eBPF-
based. In contrast to throughput, the latency of both approaches
show less sensitivity to the changes in packet size.
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