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Abstract
Cloud providers use SmartNIC-accelerated virtual switches (vSwitches)
to o!er rich network functions (NFs) for tenant VMs. Constrained
by limited SmartNIC resources, it is a challenge to provide su"-
cient network performance for high-demand VMs. Meanwhile, we
observed a signi#cant number of idle vSwitches in the data center,
which led us to consider leveraging them to build a remote re-
source pool for high-demand virtual NICs (vNICs). In this work, we
propose Nezha, a distributed vSwitch load sharing system. Nezha
reuses the existing idle SmartNICs to handle the excess load from
the local SmartNIC without adding new devices. Nezha o$oads
stateless rule/%ow tables to the remote, while keeping states locally.
This eliminates the need for state synchronization, facilitating load
sharing and failover. The deployment cost of Nezha is only a small
fraction of that required to deploy new devices. Data collected from
production show that our CPS capability bottleneck has shifted
from the vSwitch to the VM kernel stack, with #concurrent %ows
and #vNICs increased by up to 50.4x and 40x, respectively.

CCS Concepts
• Hardware→ On-chip resource management; • Networks→
Cloud computing; Data center networks.
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1 Introduction
SmartNIC-based vSwitches are widely deployed in data centers
to provide hardware-accelerated networking for virtual machines,
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containers, and serverless services [25, 29, 32, 34, 35, 50]. After de-
ploying SmartNICs in our data centers for over 8 years, we have
observed a paradox in today’s production environments: simulta-
neous vSwitch resource “shortage” and “waste”. The average CPU
and memory utilizations of vSwitches in a region were about 5%
and 1.5%, respectively, while P9999 utilization reached 90% and
96%, respectively. This indicates that while most vSwitches are un-
derutilized, a few are overloaded, becoming bottlenecks for users
demanding high-performance network capabilities [25].

Rolling out high-capacity SmartNICs is not cost-e!ective as
vSwitch overloads are rare. Partial rollout, however, makes the
migration of heavily loaded VMs inevitable, as overloads may hap-
pen on any server in the network. Migrating these heavy VMs
incurs signi#cant overhead and downtime. Another approach is to
leverage host resources to enhance vSwitch performance, but this
may impact resource sales and contradict the purpose of SmartNICs.

Sirius [25] o$oads the vSwitch processing logic of high-demand
vNICs to a shared pool of high-performance cards, providing a pio-
neering solution. However, introducing dedicated devices is costly,
especially when server SmartNICs are largely underutilized. In
Sirius, packets need to take a detour to the shared pool or card
pairs, which must maintain state, adding complexity and perfor-
mance overhead. For example, Sirius replicates state in-line by
ping-ponging packets between the primary and secondary cards
— the NF capacity halves for this reason. Nevertheless, Sirius is a
promising solution, o!ering high performance without the need to
upgrade server SmartNICs.

In light of these issues, we follow the principle of “reuse before
adding resources” and propose Nezha, which leverages idle Smart-
NICs as a resource pool for high-demand vNICs. Our production
data show that the number of new connections per second (CPS) is
the dominant capability bottlenecked at SmartNICs, followed by
#concurrent %ows and #vNIC. CPS is limited by CPU through rule
table lookups while #concurrent %ows and #vNICs are primarily
limited by memory through %ow/rule tables. This motivates us to
move the rule/%ow tables to the resource pool. Intuitively, doing so
would require state synchronization for fault tolerance and state
transfer for load balancing.

To this end, we propose a novel approach that decouples state
from rule/%ow tables. Nezha only o$oads stateless tables to the
resource pool while keeping state locally in one copy, unlike other
o$oading solutions [25, 33]. This approach e!ectively eliminates
the need for state synchronization or transfer across remote nodes
in the resource pool. To address the issue where neither local nor
remote nodes can independently process packets due to the sep-
aration of state and rule/%ow tables, we leverage data packets to
carry the necessary information for packet processing. To ensure
proper state initialization and updates, we designed work%ows for
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egress and ingress packets, using in-packet transmission and notify
packets. It shows that Nezha can leverage existing server Smart-
NIC capacity to o!er high-performance network capabilities for
high-demand tenants, shifting the bottleneck from the vSwitch to
the VM for CPS. Our key contributions are as follows:
• We propose Nezha, an architecture that leverages idle SmartNICs
as a remote resource pool to o$oad high-demand vNICs, without
introducing additional hardware. The reuse strategy allows us
to avoid extra deployment costs associated with purchasing new
devices, wiring, and software development, as well as additional
human e!orts for future iterations. Deploying Nezha on Alibaba
Cloud requires only 10% of the development e!ort compared to
Sail#sh [41], which represents solutions that need to introduce
new devices into the data center.

• We present a novel design that decouples state from rule/%ow
tables, o$oading stateless tables to remote SmartNICs while
maintaining state locally in a single copy, eliminating the need
for state synchronization or transfer. With this design, Nezha
achieves load balancing and fault tolerance across the nodes in
the resource pool using only 5-tuple hashing, without the need for
complex mechanisms such as symmetric or consistent hashing.

• For production deployment, we implemented Nezha with sev-
eral techniques. Nezha seamlessly o$oads high-demand vNICs
through a dual-stage design, falling back to local processing when
the load allows. The average and P99 completion times for activat-
ing o$oading are about 1s and 2s, respectively, with no service
interruptions. Nezha scales out resource sharing as needed and
terminates it for any vSwitch experiencing high load from its
local vNIC. Moreover, Nezha can detect crashes of remote node
and complete failover within 2s.

• Nezha has been deployed in Alibaba Cloud for a year, improving
CPS, #concurrent %ows, and #vNICs for three cloud middleboxes
by 3~4.4X, 5.04~50.4X, and over 40X, respectively. Nezha can
resolve over 99.9% of the vSwitch overloads on CPS and #concur-
rent %ows and completely avoid overloads on #vNICs. We also
discuss and share our experiences deploying Nezha.

2 Background and Motivation
2.1 SmartNIC-based vSwitches
In data centers, vSwitch enables network communication under
tenant isolation and enforces tenant-con#gured rules such as rout-
ing, metering, NAT, and ACLs for their virtual networks [28, 42].
To achieve diverse network functions (NFs), vSwitch generates the
#nal packet processing actions (i.e., forward, drop, header rewrite)
based on incoming packets, tenant-con#gured rules, and option-
ally, session states (e.g., TCP #nite-state machine (FSM), %ow-level
statistics), through speci#c processing logic (Fig. 1).

Among the three inputs, the rules for packet processing are
obtained by querying the rule tables, referred to as the slow path.
For example, if an ACL denies packets from a certain IP, a rule
match will trigger an action to drop those packets. A VM requires
at least one vNIC [9, 10, 25] to communicate externally. To ensure
tenant isolation, each vNIC maintains its own set of rule tables.
Since the rule table lookup process involves querying multiple
tables (including expensive range matching), and the lookup results
for packets with the same 5-tuple are identical, the matched action
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Figure 1: SmartNIC-based vSwitch architecture.

for the #rst packet can be cached, referred to as the fast path
to accelerate the processing of subsequent packets of the same
%ow [27–29, 34, 35, 42, 50] (Fig. 1). To distinguish di!erent tenants
using the same 5-tuples, VPC ID is also recorded in the cached
%ows.

For stateless NFs, we can obtain packet actions by simply query-
ing the rule tables, such as using a route table to decide how to
forward packets. However, to implement stateful NFs, vSwitch
needs to further combine session states with rules to derive the
#nal packet actions. For example, even if the ACL does not permit
any incoming tra"c, responses to connections initiated by the local
VM need to be allowed to pass through. Therefore, the “drop” action
generated by the ACL table lookup is not #nal; the vSwitch must
combine it with the direction of the #rst packet recorded in the
state to determine the #nal action. In this regard, we refer to rule
table lookup results as preliminary actions (pre-actions), as they are
not the #nal packet actions for stateful NFs (Fig. 1). Since states like
TCP connection status are maintained at the session level (rather
than per %ow), we record bidirectional %ows and their session states
in a single entry to avoid synchronization between separate %ow
entries [34, 50]. These states are initialized when the #rst packet
arrives and may be updated by subsequent packets of the same
session.

The packet processing logic of di!erent NFs in vSwitch can be
uniformly abstracted as Action = func(pkt, rules, states), where, for
stateless NFs, the states are null. With cached %ows on the fast path,
the packet processing logic can be accelerated to process_pkt(pre-
actions, states), with both inputs retrieved via exact matches in the
session table (Fig. 1).

2.2 vSwitch Performance Bottleneck
2.2.1 Observations. VMs overwhelming SmartNICs. During
deployment, we discovered that the demand on some network
capabilities for high-load tenant VMs could not be met, as also re-
ported by Azure [25]. Taking CPS as an example, we #nd that these
high-CPS VMs cause severe overload on their servers’ SmartNICs,
with CPU utilization > 95% in all cases (Fig. 2). Meanwhile, these
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Figure 2: CPU usage of high-
CPS VMs/their vSwitches.
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Figure 3: Hotspot distri-
bution in a region.

(a) CPU (b) Memory
Figure 4: Resource utilization CDF on O(10K) vSwitches.

Table 1: Normalized distribution of CPS, #concurrent !ows,
and #vNICs usage.

CPS #Concurrent flows #vNICs
P50 0.53% 0.78% 0.65%
P90 1.41% 2.36% 1%
P99 6.41% 6.39% 6%
P999 18.38% 29.17% 55%
P9999 100% 100% 100%

high-CPS VMs are lightly loaded, with 90% of them having CPU
utilization below 60%. Figure 3 shows that CPS is the dominant ca-
pability bottlenecked at SmartNICs, followed by #concurrent %ows
and #vNIC (Appendix A.1). The key issue is the gap in available
resources between the VMs and their SmartNICs. VMs with ample
resources (hundreds of vCPUs, hundreds to thousands of GB of
memory) [6, 7, 15] can easily overwhelm resource-limited Smart-
NICs (tens of CPUs, a few tens of GB of memory) [5, 17]. Essentially,
VMs with high network demands deplete the SmartNICs’ resources,
not their own.
Extreme load imbalance across SmartNICs. Interestingly, we
observe that only a few SmartNICs exhaust their CPU and mem-
ory resources, while most have very low resource utilization. We
measured the CPU and memory utilization of SmartNICs across
O(10K) servers in our cloud over time, as shown in Fig. 4. The CPU
utilization values for average, P90, P99, P999, and P9999 are approx-
imately 5%, 15%, 41%, 68%, 90%. For memory utilization, the values
for average, P90, P99, P999, and P9999 are approximately 1.5%, 15%,
34%, 93%, 96%. The maximum CPU utilization at P9999 reaches 98%,
which is about 20 times the average. For memory utilization, the
P9999 is 64 times the average. This observation is further con#rmed
by the VM service usage shown in Table 1. For instance, P50 VMs
account for only 0.53% of the CPS created by P9999 VMs, highlight-
ing that most service usage comes from a small number of heavy
users. A similar observation has been reported in [25, 41]; this paper
provides an in-depth root cause analysis based on speci#c cloud
services.

2.2.2 Insights. CPS limited by CPU on slow path. Each %ow’s
#rst packet triggers logic execution on the vSwitch’s slow path,
involving queries to multiple rule tables and consuming substantial
CPU resources. This limits CPS capability due to CPU constraints. In
our design, establishing a new connection requires querying at least
#ve tables (including ACL, QoS, policy, VXLAN routing, and vNIC-
Server mapping) [34]. If advanced features such as policy-based
routing, tra"cmirroring, or %ow logging are enabled, up to 12 tables
need to be queried. Even with a powerful SmartNIC, its thermal
design power (TDP) limits its computational capacity. Additionally,
the SmartNIC needs to support various hypervisors, such as storage
networks [39], container networks [36], and VMMs [55], leaving

only a few CPU cores to virtual networks. We have optimized our
SmartNIC’s capacity to O(100K) CPS, but it still cannot meet the CPS
demands of a single vNIC for some heavy users. In our cloud, some
users’ DNS servers and L7 load balancers handle large volumes of
client requests, generating massive short-lived connections that
lead to high CPS.
#Concurrent !ows limited by memory on fast path. Each ses-
sion table entry requires recording bidirectional %ows (including
the 5-tuple, VPC ID, and pre-actions) and session states (e.g., the
FSM, aging time, and statistics), occupying O(100B) in total. How-
ever, the memory on SmartNICs is extremely limited, typically a
few tens of GB, and is shared among various functions such as
storage and computation. Less than half is allocated for networking,
with most of it used for packet bu!ering, leaving only hundreds of
MB to a few GB for the session table. There are reports that VMs
cannot handle enough concurrent %ows during shopping festivals
when serving hundreds of millions of users. Some L4 load balancers
maintain persistent connections for each client, which can cause
session table bloat. Even with normal connections remaining in
the table for an average of 8s [25], massive concurrent %ows can
accumulate under high CPS.
#vNICs primarily limited by memory on slow path. Each
vNIC’s rule tables occupy memory on the slow path. Our produc-
tion data show that most vNICs require 5.5-10MB of memory. Given
the limited memory of a few GB, a single SmartNIC can support
only a few hundred vNICs, far from su"cient for a middlebox in-
stance serving thousands of tenants [46, 52]. In extreme cases, a
single vNIC can consume O(100MB) of memory to store its rule
tables. Some vNICs may need to store O(100K) vNIC-Server entries
(mapping vNICs to their servers) to communicate with VMs in large
VPCs, consuming over 200MB of memory. In this scenario, #vNICs
that a single SmartNIC can support is drastically reduced to just a
few. While vNICs consume CPU resources for management, main-
tenance and processing, #vNICs is primarily limited by memory.
The rise of container and serverless services [4, 8, 13, 19] has led to
high demands for vNIC provisioning [43, 50].
2.2.3 Key takeaway. Potential to o"load. The session table and
rule tables consume memory, while rule table lookups use CPU.
They are the primary factors exhausting memory and CPU, re-
spectively. Given that most SmartNICs have very low resource
utilization, there is an opportunity to o$oad the tables and table
lookups to idle SmartNICs, which drives the design of Nezha.

2.3 Potential Solutions and Their Issues
2.3.1 Rolling out high-capacity SmartNICs. As the load is extremely
imbalanced, provisioning every server SmartNIC for peak load is
not cost-e!ective [25]. One option is to upgrade select SmartNICs.
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Table 2: Solutions leveraging remote resource pool.
Stateful

NF support
Prevent remote

state maintenance
Without introducing
additional hardware

Sail!sh ↑ ⊋ ↑
Sirius ⊋ ↑ ↑
Tea ⊋ ↑ ↑

Nezha ⊋ ⊋ ⊋

However, as reported in [25], hotspot SmartNICs can occur on any
server, inevitably requiring the migration of high-demand VMs to
those few servers with upgraded SmartNICs. Based on our expe-
rience, live migration of high-load VMs often causes connection
interruptions (see Appendix A Fig. A1). Moreover, our servers have
diverse con#gurations to meet the varying needs of tenant VMs,
such as general-purpose, compute-intensive, GPU-accelerated, or
memory-optimized VM instances [15]. VMs of a certain type can
only migrate between servers with the corresponding con#guration
to avoid performance degradation. As a result, we must provision
upgraded SmartNICs for each server con#guration.

2.3.2 Leveraging host resources. Another approach is to extend
SmartNIC capabilities by utilizing abundant host resources for those
actions implemented in software. However, this is unsuitable for
bare-metal scenarios, where all host resources should be allocated
to the tenant. In addition, utilizing host resources presents a few
issues: a) reduced tenant-sellable resources; b) the low performance
of software vSwitches; c) potential isolation risks between software
vSwitches and tenant VMs.

2.3.3 Leveraging remote resource pool. To enhance the network
capacity of a vNIC, solutions in [25, 33, 41] use remote resource
pools for o$oading, but no solution meets all of the following
features (summarized in Table 2).
StatefulNF support. Sail#sh [41] o$oads stateless NFs (e.g., VXLAN
routing) to To#no. However, with the limited on-chip memory, it
cannot handle stateful NFs at cloud scale.
Prevent remote state maintenance. Stateful remote resource
pools face challenges in synchronizing states across replica nodes
for failure tolerance and load balancing.

For failure tolerance, Sirius and Tea adopt a primary-backup
strategy in remote resource pools, requiring state synchronization
between replica nodes to prevent inconsistencies [25, 33]. For ex-
ample, Sirius ping-pongs packets that change states between the
primary and secondary cards to achieve in-line replication of con-
nection states. For new connections, such in-line state replication
limits the achievable CPS to only half of the total capacity of the
two cards.

Sirius distributes the connections of a single vNIC acrossmultiple
cards for load balancing [25]. It hashes %ows into a #xed number
of buckets and assigns them to di!erent processing cards. The
bucket assignment changes to move load across cards. New %ows
are naturally assigned to the new card, while existing %ows remain
with the old one until most have completed. This minimizes state
transfer, which is only necessary for long-lived %ows. It is an elegant
solution, but still adds complexity and performance issues. For
example, coordination between buckets or cards is required to
implement VM-level rate limiting, which is a complex distributed
rate-limiting problem [26, 45], or it has to rely on the on-host card.

Without introducing additional hardware into system. Tea
leverages the DRAM on servers to address the limited memory
capacity of To#no switches, but still introduces a new component
(DRAM servers) to the system. Sail#sh uses To#no to develop a
cloud gateway, while Sirius constructs a high-performance Pen-
sando DPU pool. Both o!er high performance while being cost-
e!ective. For example, with Sirius, the server SmartNICs only need
to be capable of handling average load. The excess load is steered
to the powerful Pensando DPUs, which can be provisioned with
smaller peak-to-average ratios. However, they still require signif-
icant investment in additional hardware, development and main-
tenance, and are tied to vendor-speci#c chips for performance,
resulting in upfront and ongoing CAPEX/OPEX.

3 Nezha Architecture
3.1 Decoupling State from Rule/Flow Table
We leverage the idle SmartNICs on other servers to o$oad the
high-demand vNIC in the local SmartNIC. However, this may lead
to complex state synchronization across the involved SmartNICs
when sharing the load or handling failures. To eliminate the syn-
chronization issue, we propose a novel approach to decouple state
from rule tables/cached %ows and keep state locally in one copy
(Fig. 5).

Stateful NF processing requires three inputs: packets, rules, and
states. Traditionally, cloud providers store and manage rules and
states together (Fig. 5). For example, VFP keeps them in the local
vSwitch [28], while Sirius stores rules and states of high-demand
vNICs in the remote DPU pool [25]. Although all three inputs need
to be present at the moment of packet processing, this does not
imply that states and rules cannot be stored in a disaggregated
manner.

We validate the feasibility of decoupling with a strawman archi-
tecture: storing states on a local SmartNIC while keeping rule tables
and cached %ows on remote SmartNICs. Using stateful ACL as an
example, we demonstrate the equivalence of processing results
under this separation architecture. The rule table de#nes packet
processing pre-action for a certain pre#x (i.e., drop or accept) and
the state records the direction of the #rst packet (i.e., TX or RX).
The #nal packet processing action enforces RX packet acceptance
when the #rst packet direction is TX, even if the pre-action is “drop”
for any incoming tra"c. However, when the rule table and cached
%ows are moved to the remote while states are kept locally, the
following steps are required.

When ingress (RX) packets #rst reach the remote vSwitch to
obtain the ACL table lookup results for this %ow (e.g., TX: accept;
RX: drop), they are unaware of the #rst packet direction. To address
this, the remote vSwitch forwards the packet to the local vSwitch,
piggybacked with the preliminary packet drop/accept decision (pre-
action) according to its 5-tuple. The local vSwitch can thenmake the
#nal decision based on the #rst packet direction recorded in the state
(see the blue data %ow in Fig. 5). The egress (TX) packets, however,
#rst reach the local vSwitch to obtain the #rst packet direction but
are unaware of the ACL rules. Similarly, the local vSwitch forwards
the packet, piggybacked with the #rst packet direction (state), to
the remote vSwitch, where the decision of dropping or accepting
is #nalized by querying the pre-actions (see the red data %ow in
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Figure 5: Nezha architecture.

Fig. 5). This example demonstrates the feasibility of the separation
architecture decoupling state from rule/%ow tables, which allows
Nezha to reuse existing SmartNICs as a resource pool (see Fig. 6).

3.2 Architecture Overview
3.2.1 vNIC Backend and Frontend . Nezha o$oads the stateless
rule tables and cached %ows of the high-demand vNICs to a remote
pool of idle SmartNICs on other servers while maintaining the
states locally (see Fig. 5 and Fig. 6). We con#gure the rule tables
on the remote via the controller. The cached %ows are regenerated
on the %y by querying the rule tables. The node that manages the
vNIC states locally is called vNIC backend (BE), while the remote
node is referred to as vNIC frontend (FE).

Since the two inputs for packet processing (i.e., rules/%ows and
states) are stored separately in FE and BE, Nezha uses packets to
carry the information from one end to the other, bringing the inputs
together for processing. As shown in steps 1→ and 2→ of the red
data %ow in Fig. 5, for egress (TX) packets sent from the VMs,
the BE encapsulates its local states into the packet’s outer header
(e.g., NSH [44]) and transmits them to the FE. Subsequently, the
FE processes the packets based on the pre-actions recorded in the
local cached %ows and the states carried in the packet, as shown
in step 3→. If there is a %ow cache miss, a rule table lookup will be
performed. The ingress (RX) packets, as depicted in the blue data
%ow in Fig. 5, are #rst directed to the FE via route con#guration. The
FE then encapsulates the queried pre-actions into the outer header
and forwards the packets to the BE, where the packets loaded with
the pre-actions are processed using the locally maintained states.

In general, we aim to o$oad packet processing to the remote
as much as possible, thereby freeing up local resources. However,
we do not o$oad the processing of stateful NFs (i.e., process_pkt())
entirely to the remote FE. For RX packets, Nezha chooses to have
the local BE handle the processing. This is because o$oading the
processing of RX packets to the FEwould introducemultiple routing
steps between the FE and BE: the packets #rst obtain the pre-actions
from the FE, then fetch the states from the BE to be processed at
the FE, and #nally are delivered to the VMs via the BE. By keeping
process_pkt() in both FE and BE, Nezha ensures that the packet
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Figure 6: Reuse of existing SmartNICs as resource pool.

processing for both RX and TX adds only one extra hop in the end-
to-end transmission. The extra hop does not signi#cantly impact
bandwidth or latency. The bandwidth overhead is negligible in
comparison to the underutilized bandwidth in data centers. The
latency increase of a few tens of 𝐿s is also imperceptible, as most
applications have end-to-end latencies in the tens to hundreds
of ms [46]. Without Nezha, the vSwitch with excess load would
signi#cantly degrade end-to-end latency.

3.2.2 Initialization and updating of local states. The rule table is
initialized/updated by the controller according to the tenant’s intent,
while the cached %ow is generated through a rule table lookupwhen
a %ow cache miss occurs. In our design, when the rule table changes,
the associated cached %ows are invalidated and deleted, which will
be regenerated after subsequent rule table lookups.

Nezha’s separation architecture eliminates state synchronization.
However, states need to be handled carefully to ensure the correct
packet processing. Stateful NFs initialize/update states in di!erent
ways. Some rely on the results of rule table lookups (rule table
involved), while others utilize the information embedded in packets
(rule table not involved). State handling can therefore be divided
into two categories based on whether the rule table is involved.
Rule table involved. Flow-level statistics is an example that relies
on rule tables for state initialization/update, as the state dictates
what statistics to record, which can only be obtained by querying
the statistics policy table.
TX work"ow. The challenge arises because TX packets #rst go
through the BE and then the FE, making it impossible to deter-
mine how to initialize/update the rule table-involved state at the
BE. To address this, we leverage designated packets to notify the BE
on state initialization or updates. While these notify packets incur
additional bandwidth and processing overhead, they are generated
infrequently for two reasons. 1) Rule table lookup is executed only
upon cached %ow misses, which generate the rule table-involved
state. Cached %owmisses occur only on the #rst packet or rule table
updates. 2) The notify packets are generated only when the state
from the rule table lookup di!ers from that carried by the packet,
thereby further reducing the notify packet rate. For example, we
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notify the BE to update the state when the %ow-level statistics pol-
icy for a particular %ow changes (e.g., counting bytes in and out is
no longer required).
RX work"ow. The challenge for the RX packets is that the packet
has not yet passed through the BE. The FE cannot determine if the
state from the rule table lookup di!ers from the one in the BE. In
other words, it is unclear if the BE’s state needs to be updated. This
can be resolved by verifying the BE’s state. However, we decided
not to perform the veri#cation, but to simply notify the BE of the
state from the rule table lookup to avoid the additional delays and
processing. We encapsulate the state into the outer header of the
packet instead of using a separate notify packet.
Rule table not involved. Some stateful NFs initialize and update
their state based on the information provided in the packets, without
relying on the rule table. For instance, a stateful ACL uses the
direction of the #rst packet (RX/TX) to apply di!erent rules, storing
this direction as its state (see the case study in § 5.1).

For some NFs, the challenge is that RX packets may lose informa-
tion necessary for state initialization/updates after being processed
by the FE. For example, FE may replace the outer source IP of the
RX packet with its own, causing the loss of information needed
for stateful decap [25]. To this end, FE encapsulates in the packet
header the information needed for BE to initialize/update the state
and forwards the packet to BE. TX packets are not a!ected, as they
are sent directly to BE (see the case study in § 5.2).

3.2.3 Load balancing and active-active fault tolerance. To prevent
a single FE failure from causing end-to-end unavailability and to
achieve load balancing, FE and BE are in a many-to-one mapping
relation, as depicted in Fig. 5.
Hash-based load balancing. 1→As FEs only maintain stateless
rule tables and cached %ows, packets can be processed correctly
by any FE without synchronization. Thus, Nezha avoids the need
for a complex consistent hashing to address hashing inconsisten-
cies when #FEs changes. 2→Since the per-session shared state is
always stored on the BE that bidirectional %ows of the same session
must pass through, Nezha can distribute the bidirectional %ows
across di!erent FEs for %exible load-balancing. Hence, the complex
symmetric hashing is not needed. 3→Although packet-level load
balancing improves load sharing, it reduces cache friendliness. Dis-
tributing packets of the same %ow across multiple FEs not only
introduces duplicated rule table lookups but also wastes FE’s mem-
ory due to multiple copies of the same cached %ows. As such, Nezha
only does %ow-level load balancing by leveraging Hash(5-tuple) to
distribute %ows. Although dynamic FE addition/removal without
consistent hashing can lead to cache misses for ongoing %ows, the
e!ect is negligible in our design. Since each FE is stateless, handling
such cache misses simply requires a re-execution of the rule table
lookup on the new FE. This process takes only slightly more than
10 microseconds and therefore has a negligible e!ect on overall end-
to-end latency. On top of that, we do aim to reduce the frequency
of elastic scaling (as discussed in Appendix B.2).
Active-active fault tolerance. Active-active and active-passive
failover are common failure tolerance strategies. In an active-active
system, all nodes can perform tasks, allowing for better utilization
of total resources. When a single node fails, only 1/𝑀 of the tra"c
is a!ected in an active-active system, while in an active-passive

system, all the tra"c is a!ected. However, active-active failover
has drawbacks, including higher deployment costs and increased
overhead for maintaining data consistency as the number of nodes
grows. Nezha does not have these issues. First, all the FEs are al-
ready deployed on running vSwitches, incurring no extra costs
for deployment and management. Additionally, since each node is
stateless, there is no need for state synchronization. Nezha only
needs to con#gure FEs through the controller when there are rule
table changes, leading to low overhead for maintaining data con-
sistency across active nodes. As a result, Nezha keeps all FEs in an
active state to achieve high availability.

To clarify, multiple FEs in Nezha are used solely for load balanc-
ing and fault tolerance purposes, and packets are not transmitted
across multiple FEs during processing. Each FE maintains a com-
plete copy of the rule tables. As a result, all tables are processed
within a single FE to generate the pre-actions, without requiring
cross-FE table lookups or intermediate packet forwarding between
FEs.

4 Nezha implementation
4.1 Deployment Issues
There are a few deployment issues to be addressed.
Seamless switch to/back fromNezha.Hotspots are unpredictable
and can happen on any server, requiring timely dynamic o$oad-
ing vNICs to the remote. When a vNIC no longer needs remote
resources, the system should fallback from Nezha to avoid the la-
tency from the extra hop. During the switch, delays in con#guration
changes taking e!ect may cause some packets not to follow the
expected data %ow. For example, Nezha requires all RX packets
to query the rule tables at the remote #rst, but in-%ight packets
may still be forwarded to the local vSwitch. Since the local vSwitch
has o$oaded the rule tables and cached %ows to the remote, these
packets cannot be processed promptly. Rerouting and packet re-
transmission can eventually get the packet processed, but may
negatively impact user experience.
Scale-out/-in remote resource pool. To meet the dynamic de-
mand on network capacity, the remote resource pool needs to
support on-demand scaling out/in. In addition, when a vSwitch
experiences high load from its local vNIC, Nezha needs to remove
the FEs on that vSwitch from the resource pool, prioritizing local
services.
Remote pool high availability.Nezha splits the packet processing
logic originally executed in the local vSwitch into a collaborative
approach involving both remote and local vSwitches. It is critical to
ensure the high availability of the remote pool in the event of node
failures. The challenge is to quickly and accurately check the health
of the remote vSwitch, since there are multiple other hypervisors
supported by the same SmartNIC.

4.2 Seamless vNIC O"load & Fallback
4.2.1 O!load to remote. Strategy for selecting o"load vNIC.
To promptly identify the risk of vSwitch overload, each vSwitch pe-
riodically reports its resource utilization to the controller. If the con-
troller detects a vSwitch’s resource utilization exceeding a threshold,
Nezha is triggered. Then, Nezha o$oads vNICs in descending or-
der of CPU/memory consumption (depending on which resource
triggered Nezha) until vSwitch utilization falls below a safe level.
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Figure 7: Work!ow of remote o"loading.

Strategy for selecting idle vSwitches.The selection of idle vSwitches
as FEs can considerably a!ect end-to-end latency and maintenance
costs. For example, the distance between FEs and BE can result in
signi#cant di!erences in end-to-end latency. Moreover, more FEs
require more memory to record their locations in the con#g. We
look for 𝑀 idle vSwitches under the same ToR switch with similar
performance-a!ecting attributes, such as link bandwidth usage,
to ensure a consistent experience between %ows within the vNIC
(Appendix B.1). If no suitable 𝑀 vSwitches are found, we continue
searching in higher layer switches (e.g., aggregation/core). The
goal is to keep 𝑀 at a minimum without creating bottlenecks. In
production, we initialize 𝑀 to 4 (as discussed in Appendix B.2).
Work!ow of user-transparent o"loading. After the above se-
lections, the following two stages are triggered.
Dual-running stage: We maintain necessary packet processing in-
formation in both the FE and BE to ensure proper packet processing
during this stage. As shown in Fig. 7, the controller performs three
tasks in this stage. 1→The controller con#gures the vNIC rule tables
in all selected FEs. 2→To enable packet forwarding between FE and
BE, con#gure the BE/FE location in the vSwitch of the FE/BE. 3→To
enable other vSwitches to send packets directly to the FE instead
of the BE, the controller updates the vNIC-server table with the IP
and MAC of the server where the FE is located.

In practice, due to the large size of the vNIC-server table (global
routing table) and the fact that most vSwitches only require a small
subset of its entries, we con#gure the table at the gateway and
enable vSwitches to learn from it on demand [27, 37, 50]. However,
this means that the vSwitch cannot guarantee that its local vNIC-
server table is the latest, and thus it still sends packets directly to
the BE, as shown by the gray data %ow in Fig. 7. To ensure that
packets sent directly to the BE are properly processed in a timely
manner, we retain the rule tables and cached %ows on the BE for
a period. When the latest vNIC-server table is learned, packets
destined for the o$oad vNIC will be forwarded to its FE, as shown
by the red data %ow in Fig. 7.
Final stage: The dual-running stage does not last long. With a learn-
ing interval of 200ms for vSwitches in our cloud, it takes no more
than 200ms for all vSwitches to obtain the latest vNIC-server table.

Resource usage
on this vSwitch from

remote > local

Scale out Scale in

If vSwitch resource
utilization exceeds 40%

Yes No

Resource utilization
exceeds 70%

Offload

Yes

Figure 8: Three methods (scale-out, scale-in, and o!load) to
mitigate vSwitch resource utilization in Nezha.

Considering the transmission delay of in-%ight packets, we can
delete the rule tables and cached %ows on the BE after 200𝑁𝑂+𝑃𝑄𝑄 ,
entering the #nal stage.
4.2.2 Fallback to local. For vNICs that no longer need remote re-
sources from FEs, Nezha supports fallback to local to avoid the
additional latency caused by o$oading. To achieve that, the con-
troller periodically monitors the total resource consumption of each
o$oad vNIC on the FEs. A fallback is triggered only when the con-
troller estimates that the local vSwitch’s total resource utilization
remains below a safe level, taking into account the additional con-
sumption caused by the fallback. Like o$oad, fallback consists of
dual-running stage and #nal stage. The only di!erence in the fall-
back dual-running stage is that the address in the vNIC-server table
corresponds to the BE address instead of the FE address, allowing
packets destined for the vNIC to be sent directly to the BE.

4.3 Remote Resource Scale-out/-in
To prevent sudden tra"c surges from overloading vSwitches, Nezha
continuously monitors the resource utilization of vSwitches host-
ing FEs. When the resource utilization of these vSwitches triggers
an alert (exceeding a certain threshold), scaling out/in is activated.
When the alert is triggered by excessive resource usage from of-
%oading, Nezha scales out more FEs for load sharing. If the alert is
triggered by excessive resource usage from local tra"c, Nezha scales
in FEs by removing all FEs on this vSwitch to prioritize resources
for local tra"c. The scale-in may trigger subsequent scale-out on
other vSwitches if more FEs are needed to accommodate the o$oad-
ing. Notably, unlike the common cloud elastic scaling, Nezha does
not reduce the number of FEs even if the utilization of the remote
resource is low. The reasons are: 1) Low resource utilization does
not negatively impact packet processing performance; 2) Reducing
FEs may require %ows to re-execute rule table lookups, causing
delay; 3) The vSwitch still needs to process packets for its local
vNIC, so deleting FEs will not reduce costs (Appendix B.2).

Compared to o$oading, scaling out/in does not cost as much.
We therefore set the trigger threshold for scaling out/in lower than
that for o$oading. An example to show the relationship between
scale-out, scale-in and o$oad is presented in Fig. 8.



SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal Li et al.

Work!ow of scaling out.After triggering scale-out, the controller
follows the strategy in §4.2.1 to select idle vSwitches. To enable the
new vSwitches to share load, the controller performs the following
tasks: 1→Con#gure rule tables and BE locations in the new FEs.
2→Insert the location hosting these new FEs into the BE’s FE location
con!g and the gateway’s vNIC-server table. Nezha does not require
consistent hashing, and thus cannot ensure that the same %ow is
always directed to the same FE when the number of FEs changes.
However, we only need a rule table lookup if there is a %ow cache
miss.
Work!ow of scaling in. After triggering scale-in, the controller
conducts the following tasks to let the vSwitch focus on its local
vNIC tra"c: 1→Con#rm which BE’s FE is hosted on this vSwitch.
2→For each BE and FE pair, delete this vSwitch’s location from the
BE’s FE location con!g and from the gateway’s vNIC-server table.
Due to the delay in the new con#gurations taking e!ect, to ensure
that user services are not interrupted, the rule tables and the BE
location con#g of these FEs will be temporarily retained for a short
period (no longer than the learning interval + RTT).

4.4 Detection and Failover of FE Failures
Crash detection. Either the hardware or software of the SmartNIC
can fail, leading to a crash of the hosted FEs. To quickly detect FE
crashes, we use a centralized monitoring module to conduct health
checks on all vSwitches hosting FEs (e.g., ping polling). Since there
are only a few VMs requiring o$oading, the monitoring targets are
limited, keeping detection overhead low. To ensure that the mon-
itoring re%ects the vSwitch’s health rather than that of the other
hypervisors on the SmartNIC, the monitoring module sets a speci#c
destination port for probes, with "ow direct rules con#gured on
all SmartNICs to forward these packets directly to the vSwitch’s
virtual functions (VF in Single Root I/O Virtualization) [21]. The
monitoring module needs a mechanism to detect the link connec-
tivity between BE and FE, and in practice we encountered false
alarms of faulty FEs (as discussed in Appendix C).
Failover.When the vSwitch is unreachable via multiple pings, it
should be deleted immediately from all BE’s FEs, following the scale-
in logic in §4.3. However, scale-in may increase resource usage of
remaining FEs, posing an overload risk for the vSwitches hosting
them. To this end, we will maintain a minimum of 4 FEs. If one of
the 4 FEs crashes, we will delete the faulty FE and add a new one.
If there are more than 4 FEs (say, 6) and one of them crashes, we
will only delete the faulty FE, and whether to add a new FE should
be independently assessed based on the scale-out logic in §4.3.

5 Case Study
5.1 Stateful ACL in Nezha
Stateful ACL o!ers advanced connection-based access control ca-
pabilities. For example, even if an ACL blocks incoming tra"c, it
must allow responses to connections initiated by the local VM. To
implement the stateful ACL, we use state to record the direction
of the #rst packet of the session (i.e., TX or RX). The pre-action of
bidirectional cached %ows records the ACL table lookup result for
the corresponding direction (i.e., drop or accept). The #nal packet
processing decision needs to be generated by combining both the
pre-action and the state. For example, if the pre-action for a RX

packet is “drop” and for a TX packet is “accept”, and the state is TX,
then the #nal action for both RX and TX packets will be “accept”.
If the state is RX, the #nal action for the RX packet will be “drop”,
indicating an unsolicited %ow.

To simplify the explanation of stateful ACL processing logic in
Nezha, the following discussion excludes the impact of other NFs
on packet processing.
TX work!ow. For a TX packet, the BE queries the recorded state,
which may be TX, RX, or empty. If it is empty, the state is initialized
to TX. After that, the packet carries the state to the FE. Upon re-
ceiving it, the FE queries the cached %ow for the pre-action. Finally,
the FE executes the same code as before deploying Nezha to gener-
ate the #nal action based on the state and pre-action. However, if
the #nal action at the FE is “drop”, the BE is unaware of this and
still retains its state, leading to memory waste. To this end, the BE
applies a shorter aging time to the states for establishing sessions,
removing incomplete sessions and thus reducing potential memory
waste (see the SYN %ood issue in §7.3).
RX work!ow. The RX packet cannot determine the direction of
the #rst packet. The FE queries the cached %ows and encapsulates
the pre-actions in the packet. For example, these pre-actions can be
“RX: accept; TX: accept”. When the packet arrives at BE, it queries
the state, and the result may be TX, RX, or empty. If it is empty, the
state is initialized to RX to record the #rst packet direction. Finally,
BE executes the same code as before to generate the #nal action.

5.2 Stateful decapsulation in Nezha
Stateful decapsulation is commonly used in load balancers (LB). LB
distributes user packets to multiple real servers (RS). To enable the
RS to send response packets back to the LB, the RS’ vSwitch needs
to record the overlay source IP (i.e., LB address) when decapsulating
the packet overlay header, which is commonly referred to as stateful
decap [25]. This allows the RS to send the response packet to the LB.
If stateful decap is not conducted and the LB is required to maintain
the client’s address unchanged, the RS will send the response packet
directly back to the client since the inner source IP in the packet
received by the RS is the client’s address. However, since the client
has only established a TCP connection with the LB, the response
from the RS will be dropped.

For stateful decap, the #nal action of the TX packet is determined
by the state, i.e., encapsulating the overlay header of the TX packet
based on the recorded IP in the state. Therefore, the TX packet
needs to carry the IP recorded in the state to the FE, which will
perform the overlay encapsulation. The RX packet only needs to
carry the overlay source IP to the BE for state initialization (as
described in §3.2.2).

6 Evaluation
6.1 Experimental Settings
Small-scale testbed.We #rst set up a small-scale testbed to eval-
uate Nezha without the presence of other tenants to skew the
measurements. The testbed consists of hundreds of servers, each
equippedwith an in-house developed SmartNIC featuring 2x100Gbps
NICs, powered by a combination of CPU and FPGA. The vSwitch
is allocated 8 CPU cores and 10GB memory. The Client and Server
VMs are hosted on di!erent servers to avoid resource contention,
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Figure 9: Performance gain
under di"erent #FEs.

� 
� �� 
�
�����������

���

���

��


���

	�


�
�
�
���
�

���������
��������

Figure 10: CPS under di"er-
ent #vCPU cores in VM.

with each VM equipped with a 64-core Intel Xeon Platinum 8369B
CPU and 128GB memory. Other servers serve as a remote resource
pool. The results in §6.2 are from the testbed.
Production deployment. Nezha has been deployed on Alibaba
Cloud since 2024 and is available to cloud middleboxes and major
customers who have extreme demands for network capabilities.
Nezha has been released to all vSwitches in several major regions,
and these vSwitches can be used as remote resource pools. However,
only the allowed vNICs can leverage Nezha to achieve remote
o$oading. The results in §6.3 and §6.4 are collected from production
regions.

6.2 Performance in Testbed
6.2.1 Performance gain with #FEs. Figure 9 shows the performance
gain of Nezha with di!erent #FEs for remote o$oading, with FE
auto-scaling disabled.
CPS. Netperf TCP_CRR [22] is used to simulate a tra"c pattern
that primarily consists of short connections requiring high CPS. As
shown in Fig. 9, when the #FEs is less than or equal to 4, the CPS im-
provement increases with #FEs. However, when the #FEs exceeds 4,
the CPS improvement stays around 3.3X, indicating a performance
bottleneck, which is the user virtual machine (see §6.2.2).
#vNICs. Each vNIC consumes memory to store its rule table. With
limited local memory, a vSwitch cannot provide a large number
of vNICs for VMs or containers. By utilizing remote memory to
store the rule table, Nezha can signi#cantly increase #vNICs, as
shown in Fig.9. The improvement is proportional to #FEs. How-
ever, there is a potential bottleneck to the improvement. The local
vSwitch requires 2KB memory to store BE data such as FE location
information and some essential metadata to support functionali-
ties that cannot be o$oaded remotely. When #vNICs becomes too
large, it can exhaust the memory released by storing the vNIC rule
table remotely, leading to a bottleneck. In production, the rule table
consumes at least 2MB memory; therefore, in theory, Nezha can
improve #vNIC by 1000X (=2MB/2KB).
#Concurrent !ows. Because Nezha o$oads cached %ows to the
remote, the vSwitch can utilize the released memory to maintain
additional states, thus increasing #concurrent %ows. However, the
state still requires local memory for maintenance. Thus, the local
memory becomes the bottleneck in increasing #concurrent %ows.
As shown in Fig. 9, when the #FEs exceeds 4, the improvement
stays around 3.8X.

6.2.2 CPS improvement with #vCPU cores in VM. Without Nezha,
the vSwitch CPU is the bottleneck for CPS (Fig. 2). With Nezha,
the VM CPU now becomes the bottleneck (Fig. 9). Figure 10 shows
the impact of #vCPU cores in the VM on CPS. Theoretically, with
Nezha, there are su"cient remote resources, enabling the CPS
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Figure 11: CPU utilization
during o"loading/scaling.
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Figure 12: End-to-end latency
with/without Nezha.

performance to grow with #vCPU cores. However, as shown in
Fig. 10, the growth of CPS does not always correlate with #vCPU
cores. This is due to the processing bottlenecks in the VM kernel
(such as kernel locks and the limits on manageable connections),
which hinder the increase in CPS.

6.2.3 CPU utilization during o!loading/scaling. In Fig. 11, we in-
crease the CPS of a single vNIC through scripts to trigger remote
o$oading and FE scaling out. The #gure shows the vSwitch CPU
utilization of the BE and the average vSwitch CPU utilization of the
FEs during this process. The BE vSwitch CPU utilization increases
rapidly with the CPS. Once the utilization exceeds the threshold,
remote o$oading to 4 FEs is triggered. After that, the BE vSwitch
CPU utilization dropped quickly from 70% to about 10%, indicating
that Nezha can e!ectively reduce the CPU utilization of the local
vSwitch. The CPU utilization stays low, as the BE still needs to
perform some tasks such as stateful NFs for RX tra"c and encap-
sulating state into TX packets. When the average vSwitch CPU
utilization of the FEs exceeds 40%, FE scaling out is triggered (in-
creasing the #FEs to 8), which signi#cantly decreases the vSwitch
CPU utilization of FEs.

6.2.4 End-to-end latency a"er remote o!loading. To assess the im-
pact of introducing an additional hop with Nezha on end-to-end
latency, we measure the latency both with and without Nezha.
We adjust the packet rate of a single %ow, with the CPU utiliza-
tion of the vSwitch (without Nezha) on the x-axis and the latency
(with/without Nezha) at this tra"c scale on the y-axis, as illustrated
in Fig. 12.

It shows that with CPU utilization below 70%, the latency of
both cases is identical because remote o$oading has not been trig-
gered. At around 80% CPU load, the latency is slightly increased
due to the additional hop introduced by remote o$oading. How-
ever, for most cloud services, end-to-end latency typically remains
within tens of milliseconds [46]. The additional latency of less than
10𝐿𝑂 introduced by Nezha is negligible. As the CPU load continues
to increase, the latency without Nezha deteriorates rapidly due
to the local vSwitch becoming overloaded and unable to process
packets promptly. In contrast, with Nezha, the end-to-end latency
remains largely una!ected by increasing tra"c, highlighting the
e!ectiveness of o$oading.

6.3 Performance on Cloud
6.3.1 Performance improvement with middleboxes. We evaluate
Nezha using three popular middleboxes: Load Balancer (LB) [18],
Network Address Translation (NAT) gateway [16] and Transit
Router (TR) [23] — a core cloud router that enables network commu-
nication between VPCs, between VPCs and on-premises networks,
and across regions.
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Table 3: Performance gain with three middleboxes.
CPS #vNICs #Concurrent !ows

Load-balancer 4X > 40X 5.04X
NAT gateway 4.4X > 40X 50.4X
Transit router 3X > 40X 15.3X

Table 4: Completion time for activating o"loading.
Avg (ms) P90 (ms) P99 (ms) P999 (ms)

1077 1503 2087 2858

CPS. As shown in Table 3, the CPS improvements for the three
middleboxes range from 3X to 4.4X. Since the CPS of the three
middleboxes varied before Nezha took e!ect but all reached around
1.3M afterward, the performance gains di!er. Speci#cally, the more
complex the rule table lookup, the lower the CPS without Nezha,
leading to a higher performance gain with Nezha. TR has the sim-
plest rule table lookup as it bypasses the ACL rules, resulting in
the least performance gain in CPS. In contrast, LB and NAT need
to perform ACL lookups, leading to relatively higher performance
gains of 4X and 4.4X, respectively.
#vNICs.With Nezha, the improvement in #vNIC is proportional to
the rule table size. Cloud middleboxes often have a wide range of
network features and access control rules. Their rule table sizes are
typically much larger than 2MB. For example, the rule table sizes
of LB, NAT and TR are generally O(100MB). The memory released
by storing rule tables remotely can support O(10K) BEs. However,
in production, a single VM does not require such a large number
of vNICs to avoid issues such as excessive blast radius or resource
exhaustion from servicing too many users. Our production data
indicate that a single VM generally needs to increase #vNICs to
O(1K), or by several tens of times. As shown in Table 3, Nezha can
increase #vNICs for the three middleboxes by more than 40X in
production.
#Concurrent !ows. The maintenance of BE data only requires
a small portion of the memory released by storing the rule table
remotely. We utilize the remaining memory to store the states to
further increase #concurrent %ows. LB requires a massive number of
concurrent %ows to maintain long-lived connections with multiple
real servers, resulting in a session table larger than those of other
middleboxes. Therefore, the improvement increases only from 3.8X
(see §6.2.1) to 5.04X (Table 3), but it reaches roughly 30M %ows
with some more capable server SmartNICs. In contrast to LB, NAT
and TR have fewer concurrent %ows due to the absence of long-
lived connections, improving performance by 50.4X and 15.3X,
respectively.
6.3.2 Completion time for activating o!loading. Table 4 presents
the time taken from the triggering of remote o$oading until all
tra"c is forwarded through the FEs within a cluster over a month. It
shows that the average and P99 completion times are approximately
1s and 2s, respectively. This indicates that as long as the vSwitch
can manage the current load within 2s, Nezha can help prevent
overloading the vSwitch in most cases. The completion time for
triggering scaling out/in and fallback is of the same order as they
follow similar procedures to take full e!ect.
6.3.3 Daily overload occurrence. Figure 13 shows the daily over-
load occurrences before and after Nezha’s deployment. Nezha can
mitigate over 99.9% of vSwitch overloads caused by high demands
on CPS and #concurrent %ows and completely prevent overloads

Table 5: Deployment costs of Sail#sh/Nezha.
Sail#sh Nezha

Hardware development 100 person-month 0
Software development 48 person-month 15 person-month

Extra human e#ort for iteration 20 person-month 0
Time required to scale out 1 ↓ 3 months 1 ↓ 7 days

due to excessive #vNICs. A small number of overloads for CPS and
#concurrent %ows still occur because Nezha’s remote o$oading
does not take full e!ect immediately (with a P999 completion time
of about 2.8s). Once remote o$oading is in full e!ect, these over-
loads are eliminated. For #vNICs, there are no such issues as vNIC
rule tables can be directly created on the FEs.

6.3.4 Response time for failover. With automated anomaly moni-
toring and failover mechanisms, tra"c can be quickly redirected to
other healthy FEs. Figure 14 illustrates the average packet loss rate
at the region level. When an FE crashes, the loss rate experiences a
surge lasting approximately 2s. Based on the deployment experi-
ence from Alibaba and Google, many customers are not perceptibly
impacted by brief outages lasting seconds [51]. vSwitch failure will
cause VM failure. The probability of vSwitch failure is therefore
lower than that of VM failure. Major cloud providers typically o!er
VM instance-level SLAs (Service Level Agreement) exceeding 99.5%
(e.g., AWS EC2: 99.5% [2], GCP Compute Engine: 99.95% [14], Al-
ibaba Cloud ECS: 99.975% [3]). We expect the availability of vSwitch
to be signi#cantly higher than that and consider this probability of
transient packet losses acceptable. Note that without Nezha, pack-
ets exceeding the processing capacity of the local vSwitch would
otherwise be completely discarded.

6.4 Deployment Cost
To highlight Nezha’s advantage of not introducing new devices,
we compare its deployment costs to Sail#sh [41], which represents
solutions requiring new devices [25, 33].

Introducing new hardware requires substantial human e!ort
for tasks such as chip selection, design, prototype testing, security
assessment, and performance optimization. As shown in Table 5,
Sail#sh needs about 100 person-month (P-M) in hardware devel-
opment. As Sail#sh requires complete functionality development
for a new device, its software development cost is about 48 P-M.
Nezha utilizes existing SmartNICs and modi#es less than 5% of
the existing vSwitch code, resulting in only 15 P-M for software
development.

After being deployed in production, Sail#sh needs ongoing itera-
tions to accommodate new features, improve performance, #x bugs,
etc. Approximately 20 P-M are allocated for these iterations. The
slight modi#cation to the vSwitch code allows Nezha to fully reuse
the existing vSwitch team. Sail#sh requires additional electricity
to power a new network device, whereas Nezha introduces only a
slight increase in power consumption for reusing an idle SmartNIC
as an FE, since the idle SmartNIC is already powered even when
unused. Nezha does, however, introduce additional BE-FE tra"c for
the purpose of load sharing. This can be accommodated by modern
datacenter networks (e.g., 100Gbps+ links), which are provisioned
with signi#cant headroom to avoid congestion.

Deploying Sail#sh to a new region or scaling out requires select-
ing a data center, #nding suitable racks and setting up equipment.
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Figure 13: vSwitch daily overload occurrence before/after using Nezha in two regions.
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Figure 14: Impact of FE crash
on packet loss rate.
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Figure 15: Avg state size in a
region.

These tasks take at least one month, with timelines extending to
three months if device procurement is involved. Nezha only needs
to launch the new version to the vSwitches, with a cluster-level
gray release typically taking 1 to 7 days, depending on the cluster
size.

7 Experience
7.1 Potential to Increase #Concurrent Flows
A #xed state size prevents memory fragmentation, but can lead
to signi#cant memory waste. In extreme cases, a %ow that does
not require a stateful NF may have an empty state but still occu-
pies 64B of memory. The average state size ranges from 5B to 8B,
as illustrated in Fig. 15. Since most state sizes are smaller than
the allocated memory, using variable-length states could further
improve #concurrent %ows. With an average state size of 8B, the
improvement could be up to 8X (64B/8B).

7.2 New Capabilities Introduced by Nezha
With its ability to redirect tra"c, Nezha enables several new capa-
bilities. For example, it can redirect tra"c to upgraded or bug-free
vSwitches where FEs reside. For VM live migration, it can seam-
lessly redirect tra"c to the new BE by quickly updating BE location
con#g on FEs.
Flexible new feature release. In the traditional architecture, up-
grading all vSwitches is needed to enable a new feature for all
users. Fully upgrading tens of thousands of vSwitches in a region
is labor-intensive and time-consuming. With Nezha, releasing new
features has become much easier and more %exible. We only need
to upgrade a portion of the vSwitches in each region and o$oad the
vNICs that require the new feature to these upgraded vSwitches.
This approach simpli#es both testing and deployment.
Cost-e"ective fault recovery. In the past, bugs have caused issues
with inserting cached %ows into session table during the release
of a new vSwitch version, resulting in packet loss for all vNICs on
the a!ected vSwitches. In the previous architecture, all VMs had to
be migrated o! the servers for fault recovery. With Nezha, vNICs

can be o$oaded to bug-free (older version) vSwitches to avoid lo-
cal vSwitch failures caused by cached %ows. Remote o$oading of
vNICs is more cost-e!ective than VM migration, as it eliminates
the need for complex tasks that maintain consistency before and
after migration, such as state snapshots, pausing and replication.
Additionally, our production data show that the completion time
and downtime of VM migration increase with the amount of pur-
chased resources (see Fig. A1 in Appendix A). For a VM with 1024
GB of memory, the migration process can take tens of minutes to
complete. In contrast, remote o$oading takes 2s (P99) to take full
e!ect, independent of VM resource usage, without interrupting the
services as long as the VM can handle the current load during this
period.
E$cient VM live migration. VM live migration requires cre-
ating the VM, copying its state, con#guring a new vNIC on the
target vSwitch, and updating the global routing tables (vNIC-Server
mapping table in our cloud) at the gateway. For rule tables con-
suming hundreds of MB of memory, con#guring the vNIC is time-
consuming and can take several seconds. Additionally, since the
vNIC-Server mapping table cannot be updated instantly, packets
will inevitably be sent to the old address for around tens of mil-
liseconds in the cloud [27, 50]. To avoid packet losses, hairpin %ows
must be enabled on the migration source host [27, 49, 50]. With
Nezha, since the vNIC has been o$oaded to the remote, we only
need to update BE location con#g on FEs to direct tra"c to the new
BE, which takes e!ect in less than 1ms, resulting in e"cient VM
live migration.

7.3 Optimizations When Deploying Nezha
Response to SYN !ood. Local VMs may send a large number
of SYN packets, which consume the BE’s memory. If these SYN
packets are dropped by the FE (due to the rule table not allowing
them to be sent), it is a signi#cant waste of BE memory. We set a
relatively short aging time for session entries in the SYN state to
remove these incomplete sessions.
Packet processing acceleration at BE.Without cached %ows, BE
cannot perform fast packet processingwith exact matches in the fast
path. To accelerate packet processing, we insert per-%ow processing
logic into hardware, which de#nes header rewrite policies, such as
writing the FE’s IP to the outer DIP and encapsulating state.

7.4 Support for Massive vNICs on VMs
With Nezha, vSwitch memory is no longer a bottleneck for support-
ing massive vNICs on a single VM. However, the bus/device/function
(BDF) number used to identify a device function has become the
new bottleneck in deployment. Each vNIC requires a BDF number.
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Without SR-IOV [20] or SIOV [53], the BDF number is restricted to
the 8 bits in the bus #eld, as the device and function #elds remain
#xed for the same physical function. Therefore, a VM is limited to
256 BDF numbers, most of which are allocated to essential func-
tions such as storage, compute and encryption, leaving only a few
dozen for vNICs. We address this issue through the following two
methods.
I/O device virtualization.With SR-IOV or SIOV enabled on vir-
tual I/O adapters, the device #eld (5 bits) and function #eld (3 bits)
can be utilized to add 256 more BDF numbers. The additional BDF
numbers can be allocated to increase the number of vNICs that a
single VM can have. However, this method relies on support for vir-
tual device standards; for instance, SR-IOV requires virtio version
1.1 or higher.
Child vNIC. In the absence of SR-IOV or SIOV, the vSwitch can
bind multiple child vNICs to a single I/O adapter vNIC, using tags
(e.g., VLAN) in packets to di!erentiate their tra"c. They use the
I/O adapter of the parent vNIC for packet transmission to the VM,
where it is up to the application to distinguish tra"c from di!erent
vNICs using tags. This method also e!ectively increases the number
of vNICs that a single VM can support, although sharing the I/O
adapter may lead to bandwidth contention. However, our experi-
ence shows that tenants needing a large number of vNICs typically
have low bandwidth demands, making the bandwidth contention
not a particular issue.

7.5 Handling Load Imbalance in Nezha
While %ow-based load balancing, such as #ve-tuple hashing, is
widely adopted for its simplicity and e"ciency, it can lead to uneven
workloads due to hash collisions or the presence of elephant %ows.
Nezha incorporates several strategies to e!ectively mitigate such
imbalances.

When workload skew occurs due to hash distribution issues, we
can dynamically scale out additional FEs or recon#gure the hash
function at the source side to redistribute the tra"c more evenly
across the FEs.

Although mitigating incast caused by an elephant %ow is not the
primary design goal of Nezha, the system can intelligently assign
the elephant %ow to a dedicated FE, allowing the %ow to nearly
monopolize the resources of a single SmartNIC. This improves the
performance of the elephant %ow while isolating it from other ten-
ant tra"c. If even a dedicated SmartNIC is insu"cient, Nezha can
further apply sender-side rate throttling via backpressure mecha-
nisms [47] to prevent overload and maintain system stability.

8 Related Work
Sirius [25] is the most relevant work and, to our knowledge, the
#rst e!ort to o$oad server SmartNICs to a shared resource pool.
Sirius leverages Pensando DPUs [5] to build the shared pool. This
eliminates the need to upgrade server SmartNICs, which only need
to be capable of handling average load. Excess load is steered to
the powerful Pensando pool, which can be provisioned with lower
peak-to-average load ratios. As a result, Sirius o!ers high perfor-
mance while being cost-e!ective. However, it does not address the
issue that most server SmartNICs are largely underutilized, and
introducing high-spec devices into data centers incurs signi#cant

upfront and ongoing costs. To replicate state for fault tolerance,
Sirius adopts a novel in-line replication method by ping-ponging
packets between the replicas. For load balancing, Sirius proposes an
elegant solution that hashes %ows into a #xed number of buckets
and assigns these buckets to di!erent processing locations. When
moving load, the bucket assignment changes. New %ows are imme-
diately assigned to the new processing location, while existing %ows
remain with the old one until most have completed, to minimize
state transfer. State transfer is therefore only needed for long-lived
%ows. State transfer or synchronization is challenging [27]. Nezha,
however, can largely avoid these issues by decoupling state from
stateless rule/%ow tables and keeping state locally in one copy.

The idea of o$oading or sharing existing resources is not new.
There are some interestingworks in this area. In CDN, FastRoute [30]
and T-SAC [31] redirect tra"c from overloaded servers to those
with available capacity. FairNIC [32] and S-NIC [56] o!er strong
isolation guarantees for SmartNICs, mitigating resource contention.
Lynx [48] enables NF remote o$oading for servers without Smart-
NICs (such as GPU servers) by utilizing a resource pool of ex-
isting SmartNICs. Some solutions utilize high-performance cen-
tralized remote resource pools to enhance NF performance. Lu-
oShen [40] integrates CPU, FPGA, and To#no into a 2U server
switch to achieve the desired performance while adhering to the
stringent constraints of hardware budget and deployment foot-
print. Some systems [24, 38, 54] o$oad speci#c stateful NFs, such
as load balancers, to programmable switches or FPGA; however,
limited on-chip memory restricts the tra"c volume they can handle.
Sail#sh [41] o$oads stateless NFs to programmable switches, con-
structing a high-performance cloud gateway. Meanwhile, Tea [33]
uses DRAM servers to address To#no’s limited memory capacity
for storing extensive per-session state.

9 Conclusion
In today’s data centers, individual server SmartNICs struggle to
handle peak load, while much of their capacity remains unused.
This motivated us to design Nezha, a distributed vSwitch load shar-
ing system that utilizes idle SmartNICs as a resource pool, without
introducing new devices. Nezha features a novel design that decou-
ples state from rule/%ow tables, shifting stateless tables to remote
SmartNICs while keeping state locally in a single copy. This elimi-
nates the need for state synchronization, allowing Nezha to o$oad
most packet processing to the remote while simplifying load balanc-
ing across remote nodes and achieving active-active fault tolerance
with low cost and high availability. To deploy in production, we
implemented Nezha with seamless vNIC o$oading and fallback,
on-demand remote pool scaling, and timely crash detection and
failover. The results from deployment in Alibaba Cloud show that
Nezha e!ectively resolves vSwitch overloads and removes it as a
bottleneck.
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(b) Memory

Figure A1: VMmigration downtime with di"erent VM vCPU
cores and memory in a region.

A.1 Hotspot distribution in a region
Figure 3 shows the distribution of vSwitch overload due to high
demand for three network capabilities (i.e., CPS, #concurrent %ows,
#vNICs). It shows that vSwitch overloads caused by CPS account
for the highest proportion, approximately 61%. In contrast, vSwitch
overloads resulting from #concurrent %ows and #vNIC are relatively
low, accounting for about 30% and 9%, respectively. The reason is
that only a small number of tenants require their VMs to serve a
vast number of end-users, resulting in a relatively low frequency
of needing an extremely large #vNICs. Regardless of the number of
end-users, both CPS and #concurrent %ows may spike with tra"c
surges, resulting in a relatively high frequency of vSwitch overload
caused by CPS and #concurrent %ows.

Tasks o$oaded to SmartNICs such as NFs are typically CPU-
intensive, and can become memory-intensive if a large number of
active %ows need to be tracked. This makes the vSwitch’s CPU
more susceptible to overload compared to its memory, and may
explain why CPU overload from CPS occurs more frequently than
memory overload from #concurrent %ows.

Table A1: Nezha’s rule table lookup throughput (Mpps) under
di"erent packet sizes and #ACL rules.

Pkt Size (B) Number of ACL rules
0 1 8 64 100 1000

64 6.612M 6.609M 6.333M 5.973M 5.966M 5.422M
128 6.543M 6.455M 6.303M 5.826M 5.702M 5.365M
256 6.415M 6.341M 6.030M 5.430M 5.685M 5.228M
512 5.985M 5.925M 5.455M 5.258M 5.035M 4.762M

A.2 Rule table lookup throughput
The #rst packet of each new %ow requires a rule table lookup,
and the CPU cycles consumed for this process are in%uenced by
various factors, including the packet size, the number and size of
rule tables, etc. In this experiment, we measure the rule table lookup
throughput with Nezha under di!erent packet sizes and #ACL rules
in the ACL table. As shown in Table A1, with 64B packet size and
no ACL rules, vSwitch can handle SYN packets at 6.61Mpps. As the
number of ACL rules increases, the throughput gradually decreases,
as the complexity and time required for a single ACL table lookup

increase with the #rules. Additionally, as the packet size increases,
the throughput also gradually declines. This is because, while rule
table lookup throughput is theoretically independent of packet size
— since it does not rely on packet payload — larger packets increase
the time needed to move packets from the NIC to the vSwitch.

B Strategy for selecting idle SmartNICs
B.1 SmartNIC selection
To serve as FEs, SmartNICs can be selected based on underlay hop
distance to minimize latency or CPU/memory utilization to ensure
su"cient resources. Moreover, since multiple FEs are provided
for one BE, resulting in multiple data paths for its %ows, we aim
to ensure a consistent experience between the %ows across these
paths. Thus, we should not only choose the SmartNICs with metrics
(such as hardware speci#cations and resource usage) for the best
performance, but also ensure that these metrics are similar across
the selected SmartNICs. For example, selecting SmartNICs with
similar specs, distance to the BE, resource utilization and link loads
can e!ectively prevent signi#cant latency discrepancies between
%ows of the same BE that may traverse di!erent FEs.

B.2 Decision on #FEs
To ensure load balancing and prevent a single FE failure from caus-
ing end-to-end unavailability, there is a many-to-one mapping be-
tween FE and BE. However, determining the number of FEs is
not straightforward. Although the number of FEs can be dynami-
cally adjusted based on user demand through elastic scaling, Nezha
hashes the 5-tuple to assign %ows to speci#c FEs. As a result, %ows
may be reassigned to di!erent FEs after scaling, and these FEs may
not have the cached %ows. To minimize the additional overhead
from rule table lookups due to cached %owmisses, we aim to reduce
the frequency of elastic scaling.
Avoid scale-in execution. Since each FE node is deployed on the
running SmartNIC, reducing the #FEs does not result in cost savings.
Therefore, we prohibit scaling in due to low FE resource utilization,
and opt for Nezha fallback when FEs are no longer needed (see
§4.2.2).
Mitigate scale-out execution. Scaling out is generally triggered
due to an insu"cient number of FEs to handle the load. Having too
many FEs diminishes the gain and can lead to high maintenance
costs. For example, when the #FEs exceeds 4, CPS and #concurrent
%ows improvements stay around 3.3X and 3.8X, respectively (see
Fig.9). To balance out, the initial number of FEs should be set to
“the minimum required to satisfy the performance needs of most
Nezha users.” Additionally, the initial number of FEs should ideally
be a power of 2, as many vendors’ devices achieve better load bal-
ancing with this con#guration [11, 12]. This also reduces memory
fragmentation, improving storage and access e"ciency. Therefore,
we set the initial number of FEs to 4.
Production test. To validate our con#guration, we conducted a
30-day test in a production cluster of tens of thousands of servers.
In the 30 days, there were 2,499 o$oad events, involving 10,062
FEs. Since the initial value is 4, theoretically, for the 2,499 o$oaded
vNICs, 9,996 FEs (= 2499 ↔ 4) would be provisioned initially. Based
on the accumulated total of 10,062 FEs, Nezha scaled out 66 FEs
(= 10062 ↗ 9996), suggesting that there were a maximum of 66
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scaling out events. Thus, at most only 2.6% (= 66/2499) of the
resource pool underwent scaling out. If multiple FEs were scaled
to a single resource pool, the ratio of scaled resource pools would
further decrease. This indicates that having 4 FEs strikes a balance
between performance and the cost of scaling out.

C Centralized FE crash monitoring
C.1 FE-BE link connectivity
Our centralized FE crash monitoring (§4.4) can only monitor the
health of the vSwitch, but cannot determine the link connectivity
between the FE and the BE. To this end, we implemented periodic
mutual pinging between the FE and BE to remove the FE when con-
nectivity issues are detected. However, the mutual ping frequency

is much lower than that of the centralized monitoring module, as
modern data center networks generally have inherent link fault
tolerance (OpenFlow fast failover groups [1]), making complete
disconnection between servers rare.

C.2 False positives
In the past, we encountered situations where the centralized moni-
toring module reported that the majority (or even all) of the FEs
were non-functional. Based on our experience, such widespread
failures often indicate false positives, potentially caused by bugs in
the monitoring module. Therefore, we decided to suspend the pro-
cess of “automatically removing unresponsive FEs”, with manual
intervention to verify if the widespread failure was happening.
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