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Abstract
Layer-7 load balancers (L7 LBs) improve service performance, avail-
ability, and scalability in public clouds. They rely on I/O event
notification mechanisms such as epoll to dispatch connections from
the kernel to userspace workers. However, early epoll versions suf-
fered from the thundering herd problem. Epoll exclusive (available
since Linux 4.5) mitigates this but introduces LIFO wakeups, caus-
ing connection concentration on a few workers. Reuseport (Linux
3.9) hashes connections across workers but suffers from hash colli-
sions and lacks awareness of worker load. Since each worker serves
multi-tenant traffic, inter-worker load balancing is critical to avoid
worker overload and preserve tenant performance isolation.

In this work, we present Hermes, a userspace-directed I/O event
notification framework to enhance L7 LBs. Hermes uses userspace
worker status to direct kernel-space connection dispatch. It imple-
ments lock-free concurrency management for inter-process worker
status updates and retrievals, as well as scheduling decision syn-
chronization from userspace to the kernel. In the kernel, Hermes
leverages eBPF to non-intrusively override the reuseport socket
selection for custom worker scheduling. Hermes has been deployed
on O(100K) CPU cores in Alibaba Cloud, handling O(10M) RPS of
traffic. It reduces daily worker hangs by 99.8% and lowers the unit
cost of L7 LB infrastructure by 18.9%.
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1 Introduction
An L7 LB in public clouds routes traffic based on application-
layer attributes (e.g., HTTP headers), enabling fine-grained control
over request distribution. It enhances the performance, availabil-
ity, and scalability of cloud-hosted services [44, 48, 74] and has
become one of the core products offered by major cloud service
providers [3, 4, 35, 36]. In Alibaba Cloud, the L7 LB clusters have
scaled to O(100K) CPU cores, handling O(10M) requests per second
(RPS) and serving tenants across 33 global regions. Given the di-
verse and computation-intensive nature of L7 processing at these
LBs (e.g., HTTP-based routing, encryption/decryption, protocol
translation, and compression/decompression), the industry typi-
cally deploys these devices on multicore servers or VMs [48]. In
our L7 LB implementation, to support multi-tenancy, we assign
different OS ports to serve different tenants and spawn multiple
userspace worker processes to listen for incoming connections on
these ports. Since each worker handles traffic from a large num-
ber of tenants, preventing worker overload is crucial to preserving
inter-tenant performance isolation [54, 57, 73]. Therefore, effective
load balancing across userspace workers is essential.

TCP connections are established in the kernel via a three-way
handshake, while accepted connections are handled by userspace
workers. Therefore, I/O event notification mechanisms [10, 25, 29,
55] are required to dispatch new connections from the kernel to
userspace. A good notification mechanism helps achieve balanced
workload distribution across workers. For stability and maintain-
ability, we build our L7 LBs on Linux epoll [10], a mature and
efficient I/O event notification facility widely adopted in modern
Internet applications [2, 9, 19, 26, 27, 32]. Early versions of epoll
suffered from the thundering herd problem when multiple workers
listened on the same port [33]. To address this, Linux 4.5 introduced
epoll exclusive, which allows only one worker to be awakened for
incoming events on a shared port [11]. However, epoll exclusive
places all waiting workers for a port into a queue and tends to
wake the most recently enqueued worker, often leading to skewed
connection distribution. As an alternative, reuseport (introduced in
Linux 3.9) allows multiple sockets to bind to the same port, enabling
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connection dispatch across these sockets via hashing [31]. Each
worker can then be assigned a dedicated socket, thereby avoiding
epoll exclusive’s unfair wakeup issue. However, stateless hashing
may perform poorly under heavy-hitter traffic with hash collisions.
Furthermore, reuseport cannot detect userspace worker failures
and may continue to dispatch connections to unavailable workers.

A key limitation of epoll is that the kernel dispatches connec-
tions without awareness of userspace worker runtime status. Unlike
L4, L7 connections exhibit significant variation in processing load
(e.g., encryption, compression, or simple data copying), which the
kernel cannot estimate based solely on the number of packets in its
queue. To address this, we propose Hermes, a userspace-directed
I/O event notification framework to enhance our L7 LBs. Hermes
treats userspace worker status as a first-class citizen in L7 load
balancing decision making, constructs flexible and efficient con-
nection dispatch control, and customizes kernel dispatch behavior
non-intrusively with eBPF [8]. Specifically, Hermes selects worker
availability, pending event number, and accumulated connection
number as reference userspace performance metrics, and adds only
a few lines of code to the original epoll event loop for metrics
collection and kernel updates. Hermes performs worker-triggered
distributed scheduling, where each worker applies a coarse-grained
filter at the end of its epoll event loop to identify a subset of avail-
able workers, then reports them to the kernel. The kernel then
applies a fine-grained filter using eBPF to choose the final worker
to schedule. This two-level filtering prevents incoming traffic from
being continuously directed to a single worker. Hermes implements
efficient lock-free concurrency management of shared memory for
worker status updates and retrievals, as well as eBPF maps for syn-
chronizing scheduling decisions between userspace and the kernel.
In kernel space, Hermes overrides the default hash-based socket
selection of reuseport and harnesses the limited programmability
of eBPF to implement custom scheduling using bitwise operations.

Our major contributions are summarized as follows:
• We propose a closed-loop I/O event notification framework that
incorporates userspace worker runtime status into in-kernel con-
nection dispatch to improve L7 load balancing. Hermes is well
suited for cloud L7 LBs facing diverse and rapidly changing traffic
patterns, where no single scheduling policy can optimally han-
dle all tenant workloads. As epoll underpins many applications,
Hermes can be readily applied to various epoll-based use cases.
• When adapting the closed-loop control framework of Hermes to
cloud-scale L7 LBs, we address several technical issues, including
how to select appropriate worker statusmetrics; how to efficiently
update and retrieve these metrics; how to prevent the selected
worker from being overloaded by directed traffic; when and how
frequently scheduling should be performed; how to efficiently
synchronize between userspace and kernel space; how to achieve
non-intrusive kernel modifications; and how to harness eBPF’s
constrained programmability to perform custom scheduling.
• Hermes has been deployed at scale across all 33 regions of Alibaba
Cloud for over two years, sustaining O(10M) RPS of production
traffic. Compared to epoll exclusive, Hermes reduces the standard
deviation of per-worker CPU utilization and connection counts
by 90% and 99.4%, respectively, while delivering the best or near-
best performance across various workload scenarios (other epoll
modes underperform in some scenarios). After deploying Hermes,
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Figure 1: Multi-tenant L7 LBs in Alibaba Cloud.

the average daily worker hangs have decreased by 99.8%, and the
unit cost of cloud infra for our L7 LBs has dropped by 18.9%.

2 Background and Motivation
2.1 L7 LBs in Alibaba Cloud
Multi-tenant implementation of L7 LBs. In Alibaba Cloud, the
L7 LB (a.k.a., application LB [3, 4, 35, 36]) distributes HTTP/HTTPS
traffic to various backends. Most L7 LB traffic originates from Inter-
net web clients, with a portion from cloud-hosted services. The L7
LB functions as a reverse proxy, handling connection termination
and packet payload processing. Common processing tasks include:
(1) parsing HTTP packets and routing requests based on user poli-
cies; (2) decrypting HTTPS traffic from clients to reduce the SSL
processing burden on backends; (3) performing protocol translation
for other client protocols (e.g., QUIC) to ensure compatibility with
backends; and (4) compressing responses generated by backends
before sending them to clients to reduce Internet bandwidth con-
sumption. In our cloud, the L7 LB cluster has scaled to O(100K)
CPU cores, handling O(10M) RPS and serving tenants globally.

Fig. 1 shows how our L7 LBs handle multi-tenant traffic. When
incoming HTTP/HTTPS traffic (port 80/443) arrives from the In-
ternet, the cloud gateway [64, 66] encapsulates the traffic with a
VXLAN header, using the VNI to distinguish different tenants [58].
Before the traffic reaches the L7 LB, the L4 LB decapsulates the
VXLAN header and performs NAT, mapping different tenants’ traf-
fic originally towards port 80 or 443 to distinct new Dports through
header rewriting (i.e., P1, P2, ..., as shown in Fig. 1). At the L7 LB,
we bind separate listening sockets to these Dports to handle traffic
from different tenants. The kernel assigns each listening socket
its own accept queue to hold connections that have completed the
TCP handshake but have not yet been accepted by the userspace
worker processes. To reduce context switch overhead and ensure
predictable performance, userspace workers are pinned one-to-one
to CPU cores. As traffic management (e.g., rate limiting) can be
enforced at port granularity, this multi-port design enables tenant
traffic isolation and fine-grained processing at our L7 LBs.
Epoll-based connection processing. For stability and maintain-
ability, we handle connections at our L7 LBs using Linux epoll [10].
Epoll outperforms select [29] and poll [25], which scale poorly with
a large number of file descriptors due to linear scans. Fig. A1 in
Appendix shows how epoll handles concurrent connections in a
worker process. First, multiple listening sockets are created and
bound to different ports (we allocate multiple ports to serve multi-
ple tenants). Second, these listening sockets are added to an epoll
instance via epoll_ctl(). Third, the epoll event loop is established
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Figure 2: Two I/O event notification modes with epoll.

and epoll_wait() is called to wait for events (e.g., a new connec-
tion request). Fourth, when epoll_wait() detects that any listening
socket is ready (i.e., one or more new connections are waiting in
the accept queue), it returns and calls accept() to dequeue a connec-
tion from the accept queue. Fifth, accept() creates a new conn_fd
for the established connection, which is then added to the epoll
instance to monitor future events (e.g., data arrival, readiness to
write, or disconnection) on that connection (line 19-24 in Fig. A1).
At this point, epoll_wait() monitors both the listening sockets and
the newly accepted connection. For event processing, our L7 LBs
work in a run-to-completion manner over the epoll event loop.

2.2 Uneven Connection Dispatch with Epoll
The thundering herd problem. As shown in Fig. 1, in our design,
each worker process listens on multiple ports, and each port is also
listened to by multiple worker processes at the same time, leading
to the “thundering herd” problem. That is, when multiple workers
wait on the same event (e.g., network data arriving on a socket),
all of them are woken up simultaneously when the event occurs,
even though only one can actually handle it, leading to unnecessary
CPU waste. This behavior occurs in early versions of epoll [33].
Nginx uses an accept mutex to allow only one worker to accept
new connections at a time [20]. However, since the accept mutex is
a locking mechanism, it introduces additional overhead.
Epoll exclusive. Epoll exclusive, introduced in Linux 4.5, effec-
tively mitigates the thundering herd problem [11]. When multiple
worker processes listen on the same socket, they are added to its
wait queue via epoll_ctl(). In early epoll versions, a socket state
change (e.g., data arrival) triggers the socket to wake up all waiting
worker processes in the queue. With epoll exclusive, when a worker
registers on a socket via epoll_ctl(), it can explicitly declare that it
needs to be woken up exclusively via the WQ_FLAG_EXCLUSIVE
flag. When an event occurs, if all workers have set the exclusive
flag, the wait queue traversal stops immediately after the first idle
worker is woken up to handle the event (Fig. A2 in Appendix).

The wait queue is implemented as a list in the kernel and worker
processes are added to the head of the list when they call epoll_ctl().
That is, the worker that most recently joins the wait queue will be
prioritized to be woken up during each list traversal, unless it is
currently busy. This, however, leads to an imbalance in connection
dispatch across workers pinned to CPU cores, as most connections
concentrate on only a fewworkers (as shown in Fig. 2a). Such “LIFO”
wakeup behavior of epoll exclusive has also been observed by both
the Linux community [23, 34] and the industry [37].
Epoll roundrobin (rr). To address the unfair wakeup issue with
epoll exclusive, the Linux community proposed epoll rr [23, 34],
whichmoves the recently awakenedworker process to the tail of the

Table 1: Request size and processing time distributions.
Request size (bytes) Processing time (ms)

Region P50 P90 P99 P50 P90 P99

Region1 243 312 2491 2 9 42
Region2 831 3730 10132 10 77 8190
Region3 566 1951 50879 3 278 49005
Region4 721 1140 4638 4 14 239

list. While epoll rr resolves the fairness issue, its cache-cold nature
hampers the performance of some cache-sensitive applications built
on epoll, and it has not been merged into the kernel.
Reuseport. Reuseport was introduced in Linux 3.9 [31]. Reuseport
and epoll offer distinct connection dispatch mechanisms at different
stages of the network stack. Reuseport functions at the socket
binding stage, deciding which socket handles a connection when
the initial SYN packet arrives, whereas epoll operates at the event
notification stage, deciding which worker is woken up to accept a
connection already queued on a socket after the handshake. They
can be combined to help mitigate the thundering herd problem.

With reuseport enabled via the socket option SO_REUSEPORT,
multiple sockets can be bound to the same port. Consequently,
instead of multiple workers sharing a single listening socket, each
worker can listen on a dedicated socket, all bound to the same port.
The kernel distributes incoming connections among these sockets
via hashing for load balancing. Since each socket is exclusively
associated with a single worker, epoll’s notification mechanism no
longer suffers from wakeup order issues (as shown in Fig. 2b).

However, reuseport’s stateless hashing may perform poorly in
extreme cases where heavy hitters collide in the hash space. Ad-
ditionally, if a worker hangs due to a heavy task or crashes, the
stateless reuseport may continue to dispatch new connections to
the unresponsive worker (epoll exclusive handles this by assigning
new connections to the next available worker in the wait queue).

We show an example demonstrating behaviors of epoll exclusive
and reuseport in Fig. A3 in Appendix.
Userspace dispatcher. To address uneven connection distribution
with epoll, one workaround is to decouple event processing from
event fetching by assigning separate workers to process epoll events
rather than those that have fetched the events from epoll_wait().
In this approach, a userspace dispatcher collects epoll events and
distributes them to backend workers according to fair scheduling
policies. This design is common in some database management
systems with relatively expensive backend jobs [22]. However, it
does not fit our L7 LBs. In database systems, most CPU resources are
consumed by backend job processing, so the userspace dispatcher
rarely becomes a bottleneck. In contrast, for network applications,
a userspace dispatcher on the critical path may become overloaded
under high connections-per-second (CPS) traffic. As for our run-
to-completion design over epoll, the dispatcher resides within the
kernel, reducing the likelihood of it becoming a bottleneck.

2.3 Measuring Load Imbalance in Our Cloud
We measure the load imbalance caused by the default-enabled epoll
exclusive in our cloud across various dimensions.
Traffic characteristics across regions. Table 1 shows the request
size and processing time across four global regions. Variations in
service types and traffic loads lead to significant differences in pro-
cessing time. Notably, Region3 handles more WebSocket requests
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Table 2: CPU utilization imbalance within a device and
across devices in a region with 363 L7 LB devices.

Max CPU util Min CPU util Worker-level Avg

Device with Max 74.3% 2.3% 19.6%CPU util diff
Device with Min 14.4% 0.1% 1.18%CPU util diff
Device-level Avg 49.3% 1.88% 8.79%
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blocking time in one minute in our cloud.
due to its specific service composition. Since a WebSocket connec-
tion is typically counted as a single request, the measured request
size and processing time are much larger (although WebSocket
requests are large, each connection counts as one request, making
their overall share small; hence, the P99 is high while P50 and P90
remain low). Considering our L7 LB needs to handle multi-tenant
traffic with diverse characteristics, we aim to adopt a scheduling
strategy that can accommodate a broader range of traffic models.
CPU load imbalance in a region (Region2). Even within the
same region, variations in service types and traffic loads across
tenants, as well as the use of epoll exclusive, cause significant dif-
ferences in CPU utilization of our L7 LBs (in our implementation,
each L7 LB device is deployed as a VM with dedicated CPU cores
and hosts multiple L7 LB instances purchased by tenants). Table 2
shows two L7 LB devices with the max/min CPU core utilization
difference and their max/min/avg CPU core utilization, as well as
the average values of all 363 L7 LBs in the region. CPU load imbal-
ance presents two issues: (1) elevated latency and consequent client
packet retransmissions due to single-core overload; (2) increased
infra costs from scaling out additional VMs to avoid CPU overload.
Lag effect of connection load imbalance. Fig. 3 shows a sce-
nario in which, after a large number of long-lived connections are
established, a sudden traffic surge occurs simultaneously on these
connections under specific conditions. This causes the CPU uti-
lization imbalance, resulting from uneven connection distribution
among workers under epoll exclusive, to be suddenly and sharply
amplified at a later time. When connection traffic surges concur-
rently, some CPU cores that are already handling a large number of
connections become overloaded, while others remain underutilized.
The overloaded CPUs continue to process incoming connection
requests, resulting in significantly increased processing latency.
Our L7 LB has a 200-300µs normal processing latency, but due to
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Figure 6: Traffic scheduling at different positions.

the sudden traffic bursts mentioned above, we observed the P999
latency spiking to 30ms, causing customer complaints. From our
experience, many services exhibit such traffic pattern. For example,
quantitative trading establishes long-lived connections and may
have sudden traffic bursts if certain trading conditions are met.
Load imbalance across workers within an LB. Fig. 4 shows
the CDF of the number of events returned from epoll_wait() for
four workers on the same L7 LB device over 10s. It shows that
PID 5113 and 5115 are busier than the others, as their epoll in-
stances tend to collect more events from kernel space each time.
Fig. 5a shows the CDF of the event processing time after these
events are returned from epoll_wait(). It indicates that PID 5113
has a significantly longer event processing time, even though it
handles fewer events than PID 5115. This suggests that PID 5113
handles more computation-intensive tasks. Fig. 5b shows the CDF
of epoll_wait()’s blocking time. If no events arrive within a certain
period, epoll_wait() returns after 5ms to execute the event loop,
according to our settings. It can be observed that PID 5086 and 5087
are relatively idle, with most of their epoll_wait() calls blocking for
the entire 5ms. In contrast, PID 5113 and 5115 are more active.

3 Design Principles
Treat userspace worker status as a first-class citizen in L7
load balancing. In network systems, the traffic scheduler can take
effect at different stages of packet processing, as shown in Fig. 6.
Broadly, it can be categorized into three levels: NIC, protocol stack,
and application. RSS [16] and RSS++ [40] primarily operate at the
NIC level. The NIC distributes packets to different CPU cores’ ring
buffers based on the packet’s 5-tuple using a configured hash algo-
rithm, thereby balancing the packet processing load across CPU
cores. Epoll and reuseport operate within the kernel protocol stack.
Packets trigger the kernel via interrupts, undergo IP and TCP header
parsing, are aggregated into connections, and then directed to the
appropriate userspace worker for handling based on specific poli-
cies. This ensures efficient distribution of new connections among
userspace workers. Userspace L7 LBs, such as Envoy [9], can redis-
tribute incoming connections at the application level using locks,
albeit with additional overhead (Envoy’s exact balance [1]).

For L3/L4 middleboxes, the processing target is packets, and the
CPU cycles required for each packet are generally similar (as they
involve operations like table lookups). Load can therefore be esti-
mated based on simple metrics, such as the number of packets in
the queue, to achieve fair multicore scheduling [40]. However, for
L7, the processing target shifts to connection requests, which vary
significantly in size and processing complexity, ranging from sim-
ple data copying to computationally demanding operations such as
encryption and compression. This makes mechanisms like RSS used
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Figure 7: On an L7 LB, packets are evenly distributed across
NIC queues, but CPU core utilization is highly unbalanced.

in L4 LBs ineffective for L7 LBs. The measurement of our L7 LBs in-
dicates that while packets are evenly distributed across NIC queues,
CPU core utilization differences remain significant (Fig. 7). This
is because different connection requests follow different software
execution paths, with processing time varying widely. The load of
connection processing is difficult to estimate in kernel space based
on the number of packets in the queue. Instead, in userspace, more
granular metrics such as the number of events, the types of event
handlers, and the sizes of packets associated with those events can
be obtained to estimate the workload of each connection, allowing
for more effective scheduling. Existing event notification facilities
like epoll exclusive are unaware of such userspace information.

Essentially, L7 processing is often computation-intensive, whereas
L3/L4 is forwarding-intensive. We frequently see L3/L4 process-
ing with kernel bypass to reduce kernel overhead [41, 50], but for
L7, we still rely on the standard Linux protocol stack. Stability is
just one reason, but more importantly, the kernel is no longer the
bottleneck for L7 workloads; most CPU time is spent on userspace
worker tasks. Based on our experience, a 2Gbps traffic load can
cause the CPU utilization of a 32-core L7 LB to reach 50%, whereas
at the same CPU utilization, an L4 LB can forward 30Gbps of traffic.
Therefore, the status of userspace workers should be the primary
factor when making connection scheduling decisions for L7 LBs.
Buildflexible and efficient closed-loop I/O event notification.
In some single-user, well-defined service scenarios, a specific kernel
scheduling method works well. However, in public clouds, differ-
ent regions exhibit diverse traffic and service models. Even in the
same region, due to multi-tenancy, there are still various models
(with different services favoring different scheduling strategies, e.g.,
cache-hot or load balancing). Therefore, we cannot rely on a single,
fixed kernel scheduling method to solve all cases (i.e., there is no
silver bullet). Instead, a flexible scheduling framework is preferable.

Even with userspace information, connection dispatch still oc-
curs in the kernel, so it is necessary to build a feedback control
loop to notify the kernel of the userspace information. There are
many design choices to consider, such as how userspace and the
kernel should interact. Should the kernel ask userspace for input
each time it schedules a connection, or should userspace update
the kernel periodically? Additionally, what data format should be
used for communication between userspace and the kernel? Should
userspace send the information directly to the kernel for parsing,
or should userspace perform some preprocessing? Regardless of
the approach, efficiency is a key factor we need to consider.
Customize kernel functionality in a non-intrusive way. Con-
nection scheduling based on userspace input requires kernel modi-
fications. However, these modifications must accommodate a wide
range of use cases, and specific needs are difficult to merge into
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the kernel (e.g., epoll rr), as the kernel is designed for general-
purpose use. In the past, we injected new functionality into the
kernel through kernel modules. Faulty code, however, could directly
cause a kernel crash, and reproducing it required constructing real
data streams, making debugging difficult. Moreover, as the kernel
evolves, the data structures that kernel modules depend on may
change, leading to a proliferation of preprocessor conditionals in
our code to maintain compatibility across kernel versions. In Linux
4.5, the kernel introduced the SO_ATTACH_REUSEPORT_EBPF
hook [12], providing a chance to pass userspace input to the kernel
for connection scheduling. eBPF can verify code to prevent kernel
crashes, and it also provides a stable API to external applications by
encapsulating helper functions. Its CO-RE mechanism [6] addresses
data structure compatibility across kernel versions.

4 Overview of Hermes
4.1 Userspace-Directed Event Notification
Based on the above design principles, we propose Hermes, which
constructs a “feedback” control loop between kernel space and
userspace with three processing stages: (1) each userspace worker
handles connections dispatched from the kernel and updates its real-
time status (e.g., the number of pending events) to a Worker Status
Table (WST) located in a shared memory region; (2) a userspace
scheduler periodically computes a set of worker candidates for
accepting new connections based on the worker status fetched from
the WST and synchronizes the computed results with the kernel;
(3) in kernel space, a dispatcher selects a worker for connection
dispatch from the userspace-computed results, and then the loop
returns to stage 1. Fig. 8 illustrates the framework of Hermes. We
elaborate on its three processing stages as follows.
Stage 1: worker status update. This stage maintains an inter-
process table (i.e., the WST) in the shared memory accessible to
all workers. It records the runtime status of each worker and is
updated during application request processing. The table’s content
is application-specific; here, we use our L7 LB as an example.

Each row in the WST represents a scheduling metric, and each
column holds the metric values for a particular worker. For an L7 LB,
three metrics are considered: a boolean variable avail, representing
whether the current worker is available (a worker may become
stuck in request handling or crash in extreme cases, making it
unavailable to handle new requests); an integer busy, which counts
the pending events that have been triggered but not yet handled
by the worker (in an event-driven architecture, “events” refer to
kernel-detected state changes on file descriptors, such as a socket
becoming readable or writable), and an integer conn, which counts
the concurrent connections during L7 processing.
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Stage 2: connection scheduling acrossworkers.This stage takes
theWST from the previous stage as input, identifies a set of suitable
worker candidates (e.g., {W1,W2} in Fig. 8), and synchronizes them
to the kernel dispatcher for accepting new connections. For L7 LBs,
we adopt three scheduling principles. First, we select workers that
can respond promptly, filtering out those that are abnormal or slow
to respond. Next, to mitigate the risk of future worker overload due
to synchronized traffic surges across a large number of established
connections, we prefer workers with fewer accumulated connec-
tions. Finally, we choose less busy workers with fewer pending
events to reduce request processing latency.
Stage 3: connection dispatch in kernel space. This stage takes
the previously selected worker list as input and implements cus-
tom connection dispatch logic overriding the default hash-based
reuseport socket selection within the kernel through the eBPF
hook SO_ATTACH_REUSEPORT_EBPF. For each new connection,
a worker is selected from the userspace-provided worker list rather
than blindly selecting from all workers via reuseport hashing.

We give a walkthrough example to show how Hermes outper-
forms epoll exclusive and reuseport in Fig. A4 in Appendix.

4.2 Epoll Event Loop of Hermes
Based on the above description of Hermes, we observe that two
stages are performed in userspace: (1) each worker collects its own
metrics and updates them in the WST (status update); (2) worker
candidates for accepting new connections are selected based on the
metrics of all workers in the WST, and the results are synchronized
with the kernel (schedule & sync). Fig. 9 shows how these two
stages are integrated into the original epoll event loop in userspace.
Specifically, to determine whether a worker is hanging, we record
the time when the worker enters the while loop (line 12) and later
compare it with the current time to check if it has been stuck in
the loop for an extended period. To count the pending events for
a worker, we add the number of events returned by epoll_wait()
to the total (line 14), and subtract 1 for each processed event (line
18). To track accumulated connections on a worker, we increment
the count by 1 on each connection establishment (line 25) and
decrement it on connection termination (line 37). The schedule &
sync stage is performed at the end of the while loop (line 20).

As demonstrated, to implement Hermes, we have made only
minor modifications to the original epoll event loop, and the kernel-
space eBPF extension is modular and independent. Therefore, Her-
mes is easy to implement and introduces minimal additional over-
head. Considering epoll’s wide adoption, these modifications can
also be incorporated into event frameworks such as libevent [18]
and exposed to third-party applications through an SDK for broader
applicability. In the next section, we provide a detailed explanation
of our design choices and implementation techniques.

5 System Implementation
5.1 Technical Issues
5.1.1 Worker Status Metrics Selection.
Select the most effective metrics. Based on years of operational
experience, we find that high-performance, highly available L7 LBs
should assign new connections to workers that are not in an abnor-
mal state (e.g., hung or crashed), have shorter processing time for

1 // initialize
2 // create and bind listening sockets ( listen_fds ) to all ports , omitted
3 // create the epoll instance
4 ep_fd = epoll_create () ;
5 for ( ls : listen_fds ) {
6 event−>handler = accept_handler ; // to handle the first event
7 // add the listening socket to the epoll instance
8 epoll_ctl (ep_fd, EPOLL_CTL_ADD, ls, event);
9 }
10 // infinite event loop
11 while (1) {
12 + shm_avail_update(current_time);
13 event_num = epoll_wait(ep_fd, event_list , MAX_EVENTS, timer);
14 + shm_busy_count(event_num);
15 // handle currently available events returned from epoll_wait ()
16 for (event : event_list ) {
17 event−>handler(event) ;
18 + shm_busy_count(-1);
19 }
20 + schedule_and_sync();
21 }
22 // process new connections
23 accept_handler () {
24 conn_fd = accept () ;
25 + shm_conn_count(1);
26 // ... omitted
27 event−>handler = other_handler ; // e . g ., read HTTP header/body
28 // add the new connection to the epoll instance
29 epoll_ctl (ep_fd, EPOLL_CTL_ADD, conn_fd, event);
30 }
31 // handle other events
32 other_handler () {
33 // ... omitted
34 if ( err | fin ) {
35 epoll_ctl (ep_fd, EPOLL_CTL_DEL, conn_fd, event);
36 close (conn_fd) ;
37 + shm_conn_count(-1);
38 }
39 }

Figure 9: Modified epoll event loop to achieve userspace-
directed I/O event notification in Hermes.

pending tasks, and maintain fewer accumulated connections. As-
signing connections to abnormal workers may lead to unprocessed
requests, connection resets, or indefinite delays. Similarly, assign-
ing connections to workers already handling many tasks can result
in high response latency. However, we cannot rely solely on these
two criteria. A worker may have only a few pending tasks but still
maintain a large number of inactive connections. If these connec-
tions suddenly become active, they can easily overload or crash the
worker. Additionally, workers typically manage connections using
preallocated memory pools of fixed capacity. When connections are
unevenly distributed among workers, overall system capacity can
degrade significantly. In the past, we observed cases where some
workers exhausted their connection pool resources and were unable
to accept new connections, despite low CPU utilization. To meet
these scheduling requirements, we must collect effective userspace
metrics as the basis for making connection dispatch decisions.
Collect metrics with low overhead. The effectiveness of metrics
directly affects the scheduling quality, while the overhead of col-
lecting them impacts system performance. For example, Unique Set
Size (USS) accurately measures the amount of memory used by a
process but cannot be quickly obtained through a system call. To
accurately measure the USS of each worker process, specific tools
(such as smem [30], pmap [24]) or scripts to parse the smaps file of
processes are required. To ensure that metrics collection does not
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degrade connection scheduling or the overall performance of the
L7 LB, the overhead of metrics collection should be kept low.

5.1.2 Connection Scheduling across Workers.
Concurrent metrics updates and retrievals. Due to address
space isolation, each worker can only collect its own metrics; how-
ever, traffic scheduling requires visibility into the global status of all
workers, necessitating inter-process communication. The accuracy
of scheduling heavily depends on timely updates and retrievals
of worker metrics. For multi-tenant L7 LBs, a massive number of
connections and tasks per connection must be handled, leading to
frequent updates of each worker’s metrics. Therefore, an efficient
inter-process metrics synchronization mechanism is essential.
Low-overhead, high-availability scheduling. The scheduling
procedure to find the optimal worker can either be triggered by the
kernel upon receiving a new connection or performed in userspace,
with scheduling decisions subsequently updated to the kernel. For
our L7 LBs, the number of new connections per second can reach
O(100K). Performing kernel-side scheduling for each new connec-
tion would require frequent interactions with userspace to obtain
worker status, which is not scalable. Therefore, we perform sched-
uling in userspace and periodically update the results to the kernel.

Given that the scheduler runs in userspace, there are two design
options: using either a dedicated process or reusing existing worker
processes. Binding a dedicated process to a CPU core significantly
improves scheduler performance predictability. However, for cloud
service providers, every CPU core is valuable for processing multi-
tenant traffic, and using one solely for the scheduler is too costly.
If the scheduler is not bound to a CPU core, it must compete with
other processes for CPU resources, making it difficult to guarantee
predictable scheduling performance. Additionally, a single sched-
uler responsible for all traffic is more vulnerable to a single point
of failure, especially when handling malformed requests.

Reusing existing workers to execute the scheduler avoids extra
costs and provides redundancy by embedding one scheduler in each
worker, making it preferable for cloud service providers. However,
this reuse strategy still faces the following issues:

First, the primary task of a worker is to handle service logic, not
scheduling. When a worker also runs the scheduler, processing too
many events in one epoll event loop can delay timely scheduling.
Second, if scheduling decisions are updated too slowly, new con-
nections may be assigned to the wrong worker, potentially causing
worker overload and impacting system stability. Third, reusing
workers may cause multiple processes to update scheduling re-
sults to the kernel concurrently. An efficient update mechanism is
needed to avoid resource contention, which can degrade service
performance. Fourth, coupling the worker and scheduler in a single
process requires keeping the scheduler’s algorithm simple and effi-
cient to avoid affecting its execution frequency and the worker’s
high-throughput task handling. Fifth, embedding the scheduler into
the worker requires placing its logic at the right point in the event
loop, as execution timing impacts scheduling effectiveness.

5.1.3 Connection Dispatch via eBPF Hooks.
Make kernel-user interactions correct and efficient. In eBPF,
maps are key-value data structures used for storing state and shar-
ing data between kernel-space eBPF programs and userspace. eBPF
maps are stored in the kernel but can be accessed from userspace

via system calls. Using maps, we can pass userspace scheduling
decisions to the kernel for new connection dispatch. However, in
Hermes, kernel reads and userspace updates to the map occur inde-
pendently, raising the risk of inconsistent data if an update overlaps
with a kernel read. In addition to ensuring correctness, the efficiency
of kernel-user interactions should also be considered.
Harness the limited programmability of eBPF. It is known
that, for security and performance reasons, eBPF’s programmability
is limited: it does not support loops, recursive calls, or complex hash
computations. Moreover, we need to avoid making eBPF programs
overly complex, as this can impact the performance and stability of
kernel functions. Implementing worker selection and connection
dispatch in the kernel under these constraints is challenging.

5.2 Cascading Worker Filtering
5.2.1 The Selected Userspace Metrics.

For effective worker scheduling, we select three worker status
metrics — timestamp of entering event loop, pending event number,
and accumulated connection number.

To identify abnormal workers, we analyze their common traits
and find that they often get stuck in the epoll event loop without
returning for a long time. For example, we once encountered a case
where request processing delay surged from 30ms to 440s because
a worker was stuck on a read event. The worker’s processing was
slower than the upstream data writing, preventing timely buffer
draining. To prevent one tenant’s events from blocking others, we
must detect worker hangs promptly. A key indicator of a worker
hang is when the event loop stops rotating. Therefore, we record
the timestamp when each worker enters the event loop (line 12 in
Fig. 9) and, during scheduling, compare it with the current time
to determine if the worker is stuck. As each worker embeds a
scheduler, when a worker hangs, others can detect its hung status
by accessing the timestamp it leaves in the shared memory.

Based on our experience, L7 task processing time can be esti-
mated using the number of events in the event list, event handler
type, and the size of packets associated with each event. Unfor-
tunately, the event list contains only event descriptors with the
handler type and a data pointer; the actual packet data can be
accessed only during later processing, leaving the packet size un-
known in advance. Historical data shows that the handler type
alone is insufficient for accurate estimation without packet size in-
formation, but the number of events correlates well with processing
time. Therefore, we use only the event number for estimation.

The accumulated number of connections can be easily collected
by the worker by instrumenting at the connection establishment
and release points, as shown in line 25 and line 37 in Fig. 9.

5.2.2 Worker Filtering Strategies.
Worker filtering logic. To filter out unavailable workers, we read
their timestamps and compare them with the current time. If the
difference exceeds a threshold, the corresponding worker is consid-
ered hung, as it has not reentered the while loop for an extended
period (line 9-10 in Algo. 1). For the metrics of pending event num-
ber and connection number, smaller values indicate more preferred
workers. Therefore, we use their average values as a baseline to
select workers with values below the baseline. Moreover, to prevent



SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal Pan et al.

selecting too few available workers, we raise the baseline slightly
by adding a small offset θ to the average (line 11-13 in Algo. 1).
Algorithm 1: Scheduler
1 Function schedule_and_sync():
2 W ← {w1, · · · , wn }

3 t ime, event, conn ← Read_SHM()
4 W ← FilterTime(t ime,W )

5 W ← FilterCount(conn,W )

6 W ← FilterCount(event,W )

7 SelW orker ← Array2INT(W)

8 BPF_MAP_UPDATE(SelW orker, MSel )

9 Function FilterTime(R,W ):
10 return {wi | currentT ime() − Ri < Threshold, wi ∈W }

11 Function FilterCount(R,W ):
12 Avд ← CalculateAverage({Ri | wi ∈W })
13 return {wi | Ri < Avд + θ, wi ∈W }

Worker filtering order. Based on different weights for perfor-
mance and stability across the three metrics, we design a cascading
worker filtering algorithm (line 4-6 in Algo. 1), with earlier filtering
stages prioritized for quickly excluding unsuitable workers. Since
the timestamp identifies unavailable workers to which new con-
nections should not be assigned, we use it for first-level filtering.
The connection number identifies workers with fewer connections,
helping reduce the risk of traffic surges from many concurrent
connections. The pending event number identifies workers that
can respond quickly, reducing the processing delay. Our produc-
tion data shows that long-lived connections are common. Evenly
distributing these connections enhances both system stability and
capacity, which are crucial in a multi-tenant system. Accordingly,
we perform second-level filtering based on the connection number
and third-level filtering based on the pending event number.

5.3 Multi-Worker Cooperative Scheduling
5.3.1 Lock-Free Shared Metrics Data Structure.

In the modified epoll event loop (Fig. 9), workers update their
metrics in the WST, while the scheduler retrieves the entire WST to
filter workers based on global metrics. This requires concurrent up-
dates and reads of shared variables. In our implementation, we use
shared memory to store the WST and employ a lock-free approach
for accessing shared variables to improve performance (Fig. 10).

Specifically, we partition the shared memory by worker, so that
when a worker updates its own status metrics, it does not interfere
with others, eliminating the need for write locks to block updates
from other workers. For the scheduler reading all worker status, we
also omit read-write locks, allowing other workers to update their
status while the scheduler is reading. The benefit of not adding
read-write locks is avoiding performance drops caused by blocking,
although this may lead to data inconsistency during reads. However,
for our system, we argue that such inconsistency has a negligible
impact on scheduling decisions, for the following reasons:

First, the probability of a worker status update during the sched-
uler read is low, and the chance of reading data that is being updated
is even lower. Empirical measurements show that reading data from
a few workers takes only tens of ns, while updates to worker status
metrics occur much less frequently, typically every few ms.

Second, even if, in rare cases, a few workers are updated during
the scheduler read, it will not cause a significant deviation in the
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Figure 10: Concurrency handling of WST and eBPF maps.

scheduling decisions. This is because the most recently updated
data better reflects the workers’ runtime status, and scheduling
based on the latest worker status is unlikely to cause serious errors.

However, since each worker has three status variables (i.e., times-
tamp, event, connection), to prevent dirty data from updates to the
same status variable during reading, each status variable is stored us-
ing atomic<int>, ensuring atomicity for both read and write. When
one process writes to an atomic<int> variable, other processes will
observe a consistent value when reading that variable during this
period. These techniques allow Hermes to efficiently manage the
WST in the shared memory without explicitly introducing locks.

5.3.2 Worker-Triggered Distributed Scheduling.
We address the technical issues of reusing existing workers to

execute the scheduler as follows.
Concurrent scheduling for real-time responsiveness.We use
the following strategies to ensure that the scheduler executes at a
sufficient frequency, thereby maintaining scheduling accuracy: (1)
we set the epoll_wait() timeout to 5ms, ensuring that each worker
executes the event loop and performs a scheduling operation at
least once every 5ms, even in the absence of I/O events; (2) multiple
workers run their own schedulers concurrently, providing real-time
responsiveness even when some workers are busy handling heavy
tasks; (3) if all workers hang, our alert mechanism will detect the
issue and identify the root cause: if the system is simply saturated
due to high CPU or memory usage from heavy traffic, more VMs
will be scaled out to increase capacity; if it is a failure, the faulty L7
LB will be taken out of service and replaced with healthy VMs.
Worker overload prevention with two-stage filtering. Even
when multiple workers independently trigger scheduling, the com-
bined frequency at which userspace updates the kernel for connec-
tion dispatch remains significantly lower than the new connection
arrival rate (e.g., O(100K)/s). If userspace passes only a single avail-
able worker to the kernel at a time, the kernel will direct all new
connections to that worker, leading to worker overload. To ad-
dress this, we propose a two-stage worker filtering mechanism.
First, the scheduler in userspace selects multiple available workers
(coarse-grained filtering) and passes them to kernel space, where
new connections are distributed among them (fine-grained filter-
ing). If the number of workers selected in coarse-grained filtering is
insufficient, the kernel will fall back to reuseport-based scheduling.
Concurrency management of scheduling results. In Hermes,
multiple workers may simultaneously output scheduling results to
the kernel (see Fig. 10), and we need an efficient data structure to
carry these scheduling results. We use 1 to represent an available
worker and 0 for an unavailable one, storing these results in an
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array whose length equals the number of workers, e.g., {1, 1, 0, 0,
1} indicates that workers with ID 1, 2, and 5 are selected. However,
this array-based data structure requires explicit locking to prevent
race conditions, e.g., when one worker is updating the array, other
workers must wait for the update to complete, which degrades
system throughput. To address this, we use a bitmap (e.g., 11001)
to record the available workers, which is then encoded as a 64-bit
integer. By leveraging atomic<int>, we can manage concurrent
updates across workers without explicitly using locks.
O(n) scheduling time complexity. As shown in Algo. 1, the
scheduler is lightweight, as it only uses a single-level loop to check
the worker status. Therefore, its complexity is only O(n).
Scheduling timing in epoll event loop. In Fig. 9, we place the
scheduler at the end of the epoll event loop so that it executes
only after the worker has handled the current batch of events. This
design captures the worker’s most up-to-date load status, allowing
the scheduler to determine whether the worker remains suitable for
handling new connections. In contrast, placing the scheduler at the
beginning of the loop risks observing stale or misleading status. A
worker may appear idle before calling epoll_wait(), but could imme-
diately receive a burst of events afterward. If the scheduler marks
the worker as available based on that outdated information, it may
overload the worker and delay both new and ongoing connections.

5.4 Cost-Effective eBPF Implementation
Concurrency management of eBPF maps. The scheduling re-
sults generated in userspace need to be updated to the kernel. We
use eBPF maps as an intermediary between userspace and kernel
space to facilitate data sharing (see Fig. 10). Since eBPF maps do not
natively provide an interface to pass int-type data, we use an eBPF
map of type BPF_MAP_TYPE_ARRAY to transmit the results. To
accommodate the int-based bitmap from userspace, we create an ar-
ray with a single int element in the eBPF map (i.e.,MSel in Algo. 1).
Since eBPF maps inherently support atomic<int>, concurrent reads
and writes can be performed correctly without locks.
Final worker filtering with bitwise operations. The eBPF ker-
nel module in Hermes dispatches new connections to userspace
workers. The module first checks whether the number of avail-
able workers reported by userspace is sufficient (e.g., > 1). This
involves counting how many bits in the int-based bitmap provided
by userspace are set to 1, representing how many workers have
passed the coarse-grained filtering, denoted asn (line 3 in Algo. 2). If
n is too small, the kernel takes no further action and falls back to the
reuseport mode (which has already been initialized). If n satisfies
the condition, fine-grained filtering is applied to the n workers (line
4). To evenly distribute new connections among these workers, we
use the hash value of the packet’s 4-tuple for load balancing (note
that this hash value is precomputed by the kernel). The implemen-
tation consists of two steps: (1) use reciprocal_scale() to scale the
hash value to the range of 1 to n, denoted as Nth (line 5); (2) locate
the Nth non-zero bit in the bitmap, which identifies the selected
worker ID (line 6). Due to eBPF’s limited programmability, we rely
on classic bitwise operations such as CountNonZeroBits() and Find-
NthNonZeroBit() based on [5, 14], while bpf_map_lookup_elem()
and reciprocal_scale() are functions provided by the kernel.
Reuseport socket selection. Although we have computed the
final worker ID for accepting new connections, the kernel does

Algorithm 2: eBPF-based Connection Dispatch
input: The eBPF map MSel with userspace selected workers, the eBPF map

Msocket with worker to socket mapping.
1 Function conn_dispatch_socket_select(MSel , Msocket ):
2 C ← bpf_map_lookup_elem(MSel )

3 n ← CountNonZeroBits(C)
4 if n > 1 then
5 Nth ← reciprocal_scale(4 − tuple .hash, n)
6 ID ← FindNthNonZeroBit(C, Nth)
7 return bpf_sk_select_reuseport(Msocket , ID)

not interpret it directly, as the kernel can only perform sched-
uling over sockets. To bridge this gap, during Hermes program
initialization, we allocate another eBPF map Msocket (map type
BPF_MAP_TYPE_REUSEPORT_SOCKARRAY) to record the map-
ping between worker IDs and sockets. Finally, we inform the kernel
of the scheduled socket through bpf_sk_select_reuseport() (line 7).

6 Evaluation
6.1 Methodology
Hermes has been deployed across all Alibaba Cloud regions for
over two years. Given that this paper focuses on intra-server load
balancing, deploying multiple LBs yields results equivalent to those
obtained with a single LB. Therefore, to demonstrate Hermes’s
benefits over epoll exclusive and reuseport, we redeploy one LB
with epoll exclusive and another with reuseport, along with others
with Hermes, in a single LB cluster (8 LBs in total for load sharing
and failure recovery). Each LB is a 32-core VM with 128GB memory,
running Linux 4.19. This LB cluster serves about 1500 tenants,
handling hundreds of thousands of RPS of production traffic.

6.2 Performance of Hermes
Performance in specific cases. During evaluation with produc-
tion traffic, we found that both epoll exclusive and reuseport exhibit
performance degradation in certain cases. To assess the perfor-
mance of Hermes in these specific cases, we collected and replayed
traffic from them. Additionally, we replayed traffic at 2 to 3 times the
original rate to emulate “medium” and “heavy” workloads. Table 3
shows the throughput of a single L7 LB and the end-to-end request
processing time for the three solutions. If the request processing
time exceeds 50% or the throughput differs by more than 20% from
the optimal, it will be marked as “×”. A solution that has never
performed optimally in a case or has multiple “×” marks will be
considered ineffective in that case (labeled as “×” too). These cases
are prevalent in public clouds and cover almost all traffic models,
although their distribution varies across regions due to workload
differences (see Table 4). Epoll exclusive and reuseport perform
poorly in the commonly occurring case 3 and case 4, respectively.
Case 1: Reuseport/Hermes > Exclusive. Case 1’s traffic model is char-
acterized by high CPS and low average processing time at the
LB, typically seen during stress testing or traffic spike scenarios.
Epoll exclusive performs poorly for two reasons. First, the low av-
erage processing time leaves workers idle. As a result, the LIFO
wakeup behavior causes a few workers to handle most of the con-
nections, leading to high single-core load. Second, the overhead of
dispatching new connections is O(1) for Hermes and reuseport, but
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Table 3: Hermes performance in specific cases compared with epoll exclusive and epoll with reuseport
Light workload Medium workload Heavy workload

Avg (ms) P99 (ms) Thr (kRPS) Avg (ms) P99 (ms) Thr (kRPS) Avg (ms) P99 (ms) Thr (kRPS)

Case1: Epoll exclusive(×) 0.890 (×) 9.71 (×) 76.1 2.62 25.22 129.5 7.09 27.45 207.8 (×)
High CPS, Epoll with reuseport(✓) 0.439 6.12 79.4 2.21 24.36 139.8 5.10 26.93 281.4

Low Avg processing time Hermes(✓) 0.595 6.95 78 2.59 25.72 128.6 5.02 26.55 319.5

Case2: Epoll exclusive(×) 1.05 11.76 38.2 1.86 (×) 16.76 (×) 36.9 121.27 (×) 1030 (×) 16 (×)
High CPS, Epoll with reuseport(×) 21.93 (×) 1480 (×) 10 (×) 88.7 (×) 1640 (×) 0.64 (×) 212.75 (×) 1820 (×) 0.27 (×)

High Avg processing time Hermes(✓) 0.99 10.82 38.3 1.05 10.94 37.8 10.47 376.56 24

Case3: Epoll exclusive(×) 0.413 (×) 2.228 (×) 193 0.587 61.398 (×) 631.2 0.974 67.649 (×) 830.7
Low CPS, Epoll with reuseport(✓) 0.259 1.368 206.4 0.466 14.685 631.1 0.784 35.817 818.2

Low Avg processing time Hermes(✓) 0.259 1.289 202.9 0.453 15.741 631.8 0.770 28.251 932.9

Case4: Epoll exclusive(✓) 5.99 (×) 79.46 (×) 34.2 13.68 300.12 33.1 95.08 593.04 16.5
Low CPS, Epoll with reuseport(×) 3.98 (×) 50.06 35.6 47.35 (×) 303.34 14.97 (×) 182.00 (×) 1240 (×) 5 (×)

High Avg processing time Hermes(✓) 1.99 40.43 39.4 16.08 348.96 27.1 135.75 623.37 14.5

Table 4: Distribution of 4 cases in Table 3 across regions.
Region1 Region2 Region3 Region4 Avg

Case1 19.45% 0.77% 6.6% 2.81% 7.4075%
Case2 0.55% 7.83% 2.9% 7.41% 4.6725%
Case3 65.61% 9.27% 60.8% 89.07% 56.1875%
Case4 14.39% 82.13% 29.7% 0.71% 31.7325%

O(#ports) for exclusive. The reason is that, for exclusive, all ports
are registered with the epoll instance. In contrast, for Hermes and
reuseport, each worker’s epoll instance monitors only a single port.
This is especially relevant under high CPS, as the dispatch overhead
may affect performance. Hermes experiences higher latency under
low and medium loads primarily due to the overhead of userspace-
directed scheduling, though it remains lower than that of exclusive.
Under heavy load, Hermes exhibits the best performance.
Case 2: Hermes > Exclusive > Reuseport. Case 2’s traffic model ex-
hibits high CPS and high average processing time, typically ob-
served in stress testing or traffic spike scenarios involving time-
consuming tasks (e.g., compression). High average processing time
keeps workers in a busy or hung state. Since Hermes avoids dis-
patching requests to busy or hung workers, it delivers the best
performance. Unlike reuseport’s stateless hashing, which may intro-
duce significant queuing delays, epoll exclusive avoids scheduling
connections to already hung workers. However, as in Case 1, the
performance of exclusive degrades rapidly under heavy load.
Case 3: Hermes/Reuseport > Exclusive. In the case of low CPS and
low average processing time, typically seen in finance and chat
applications with long-lived connections, epoll exclusive performs
unacceptably poorly. Its LIFO wakeup behavior causes connections
to concentrate on a few workers, leading to worker overload during
subsequent request surges. Both reuseport and Hermes distribute
long-lived connections well, but under heavy load, Hermes exhibits
more balanced load distribution due to userspace awareness.
Case 4: Hermes/Exclusive > Reuseport. In the case of low CPS and
high average processing time, typically seen in web services, reuse-
port performs unacceptably poorly. The high processing time stems
from CPU-intensive tasks performed by the LB, such as SSL hand-
shakes and regex-based routing for the web services. Once estab-
lished, these computationally expensive connections cannot be
migrated, and only new ones can be scheduled. Reuseport performs
the worst, as its stateless hashing introduces queuing delays when
assigning new connections to the overloaded workers. Hermes and
epoll exclusive are on par, with Hermes experiencing slightly higher
delays under high load. This is because exclusive can promptly pre-
vent busy workers from accepting new connections, while our
closed-loop scheduling has a certain delay in identifying unavail-
able workers and notifying the kernel to enforce their exclusion.
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To summarize, the closed-loop design of Hermes offers strong
adaptability. Hermes performs close to the best level across all
cases, while both epoll exclusive and reuseport exhibit performance
degradation in certain cases. Hermes is more suitable for multi-
tenant cloud LBs with diverse and rapidly changing traffic patterns.
#Hung workers before and after Hermes deployment. To de-
tect promptly when a worker hangs, we periodically send probes
to all workers and measure their end-to-end delays. The LB con-
tains no probe processing logic, so under normal conditions, the
delay should not exceed 1ms. Internal network transmission delays
exceeding 200ms are unacceptable to cloud service providers, as
they may lead to client timeouts with a 499 status code, causing
service disruptions and customer complaints. To show Hermes’s
effectiveness in balancing worker load and reducing worker hangs,
we report the #probes exceeding 200ms over a day in two regions
before and after Hermes deployment (epoll exclusive was enabled
before Hermes), as shown in Fig. 11. In Region1 and Region2, de-
layed probes are reduced by 99.8% and 99%, respectively, indicating
a significant improvement in tenant experience.

Hermes is deployed through a canary release, a strategy that
gradually rolls out a new version to a subset of targets to reduce
risk and ensure stability. During the rollout, new-version VMs with
Hermes are gradually added to the L7 LB cluster, while old-version
VMs are phased out. Once a VM is removed, it no longer handles
new connections, but existing connections continue to transmit
packets until the traffic on that VM fully drains. At that point, no
more health check probes are sent to it. The time it takes for existing
connections to drain depends on the client type. For example, some
mobile clients drop connections quickly due to network changes,
while IoT clients or cloud services may keep connections alive
for a long time. In Region1, a few probes continued reaching old-
version VMs even after the release, lasting up to 11 days until all
connections expired. In Region2, connections drained faster, and
probes quickly shifted to new VMs (see Fig. 11).
Unit cost of cloud infra before and afterHermes deployment.
Before deploying Hermes, frequent worker hangs due to load im-
balance forced us to maintain a low safety threshold for each LB;
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Figure 13: Hermes load balancing performance under production traffic (vs. epoll exclusive/reuseport).

Table 5: Overhead (CPU utilization) of Hermes components.
Userspace Kernel space

Counter Scheduler System call Dispatcher

Light 0.122% 0.272% 0.275% 0.005%
Medium 0.412% 0.381% 0.590% 0.019%
Heavy 0.897% 0.531% 0.965% 0.043%

specifically, we scaled out more LBs whenever CPU utilization ex-
ceeded 30%. After deploying Hermes, hung workers are eliminated
(see Fig. 11), enabling us to increase the LB’s safety threshold to 40%.
As a result, we can handle the same traffic with fewer VMs, thus
lowering cloud infra costs. Due to the increasing traffic volume,
we are unable to demonstrate overall cost reduction. Instead, we
present the unit cost for a region (= LB’s total cloud infra cost /
total traffic) to measure the cost savings from Hermes, as shown in
Fig. 12 (data has been normalized to comply with company policies).
After the Hermes release, the unit cost decreases monthly, with a
peak reduction of 18.9%. It is important to note that while further
increasing the safety threshold could continue to lower costs, it
may impact disaster recovery across AZs, as sufficient redundancy
must be reserved to handle traffic migrated from failed AZs.
Load balancing performance ofHermes in production. Fig. 13
shows the standard deviation (SD) of CPU utilization and #connec-
tions among LB workers over two days, with the three epoll modes
enabled. We record the CPU utilization and #connections of each
worker at every sampling point. A smaller SD indicates a more
balanced distribution among the workers. As shown, the CPU SDs
for exclusive, reuseport, and Hermes are 26%, 2.7%, and 2.7%, respec-
tively, while the SDs of #connections are 3200, 50, and 20. Due to
epoll exclusive’s LIFO wakeup behavior, connections concentrate
on a few workers, making its load balance significantly worse than
the other two. Reuseport distributes new connections with hashing,
which can theoretically achieve perfect balance. However, due to
the varying durations of connections, with short connections clos-
ing quickly, the actual #connections on workers is less balanced.
Hermes, on the other hand, selects workers with fewer connections,
resulting in optimal load balance. This also helps reduce the CPU
overload risk due to sudden traffic surges on these connections.
Overhead of Hermes.We use Perf’s flame graph to analyze the
CPU usage of each function. Table 5 reports the overhead of Hermes,
which ranges from 0.674% to 2.436% in terms of CPU utilization un-
der varying traffic loads. L7 LBs rarely experience sustained heavy
loads, as they can proactively scale out. Heavy load cases only occur
briefly during traffic migration from other AZs or sudden spikes.
Therefore, the overhead is below 1% most of the time. Among its
components, the dispatcher is the most lightweight as it only in-
volves simple eBPF bitwise operations. The counter, which needs to
record per-connection counts and uses atomic<int>, incurs increas-
ing overhead as #connections grows. The scheduler involves simple
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computations with low overhead. Updating eBPF maps requires
system calls and context switches, incurring additional overhead.
#Workers passing coarse-grained filtering. Fig. 14 shows the
ratio of workers passing the coarse-grained filter to the total number
of workers under different workloads. The ratio decreases when
the workload increases, as more workers are in a busy state.
Call frequency of scheduler. Fig. 14 also shows that the sched-
uler’s call frequency increases with the workload. As the duration
of epoll_wait() significantly decreases under heavy traffic load, the
scheduler is executed more frequently. In fact, a higher traffic load
triggering more frequent scheduler execution aligns well with our
needs. That is, to prevent the scheduling strategy from being up-
dated too slowly under increasing load, which may lead to CPU
core overload, a higher scheduling frequency must be maintained.
Under heavy workload, the scheduling frequency can reach 20k/s.
Selection of offset θ . To prevent too few workers from being
selected in coarse-grained filtering, which could result in a small
number of workers handling too many connections, we introduce
an offset θ into coarse-grained filtering. Fig. 15 shows the impact of
θ /Avд on the average P99 latency and the average throughput. A
smaller offset results in fewer workers passing the coarse-grained
filter, causing new connections to concentrate on a small number of
workers, which negatively affects request processing latency and
system throughput. On the other hand, an excessively large offset
allows workers with relatively high connection or event load to be
selected, potentially delaying the processing of new connections
and degrading overall system performance. As shown in Fig. 15,
setting θ /Avд to 0.5 yields the best performance.

7 Experiences
Deployment issues from replacing epoll exclusive with Her-
mes.We encountered two issues during the deployment of Hermes
to replace epoll exclusive in production:
Sudden load imbalance on tenants’ backend servers. Some tenants re-
ported sudden load imbalance across their backend servers behind
our L7 LBs, with certain servers receiving 2-3x the traffic of others.
The affected tenants typically operate large backend server pools
that frequently scale out and in. Through debugging, we identified



SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal Pan et al.

the root cause. When a tenant’s backend servers change, the con-
troller updates the server list on each LB worker to ensure correct
forwarding. Each worker then resumes round-robin distribution of
connection requests starting from the first server on the updated
server list. Since all workers share the same list order and start
point, the first few servers receive disproportionately more traffic.

Under epoll exclusive, load balancing among backend servers
largely relies on a single worker, as it handles most requests. This
typically ensures that #requests handled by the worker significantly
exceeds #backend servers, resulting in relatively even round-robin
distribution. Hermes, however, distributes traffic evenly across all
workers, leading to each worker handling fewer requests. Conse-
quently, after list updates, the servers at the beginning of the list
receive more traffic due to synchronized round-robin restarts. To
mitigate this, we randomize each worker’s starting offset after list
updates, improving the fairness of traffic distribution.
More connections established with backend servers. Unlike epoll ex-
clusive, which funnels most requests through only a few workers,
Hermes distributes traffic evenly across all workers. This improves
load balancing but reduces connection reuse, as connections estab-
lished with backend servers are more evenly spread across workers.
The impact becomes more pronounced when backend servers re-
side in on-premises IDCs and are accessed over the Internet, where
costly handshake negotiations (e.g., TCP or TLS) over long distances
can significantly increase end-to-end request latency. The problem
can be addressed by switching from per-worker connection pools
to a shared pool among workers to enhance connection reuse.
Will the 64-bit atomic<int> limit the use of Hermes on high-
capacity servers/VMs (e.g., 128 cores)? In the current Hermes
implementation, we use a 64-bit atomic<int> to synchronize coarse-
grained filtering decisions from userspace to the kernel, supporting
up to 64 workers without requiring locks. This design raises con-
cerns about scalability in terms of the number of supported workers,
given that modern server CPUs often feature 128 or more cores.

To address this, Hermes employs a two-level worker selection
mechanism. Workers are grouped into sets of 64. When distributing
new connections, we first select a worker group using a simple 4-
tuple hash to choose an eBPFmap (i.e., level-1 selection).Within that
group, we apply the original Hermes logic based on the atomic<int>
recorded in the eBPF map to select a specific worker. Each worker
group maintains an independent Worker Status Table (WST), up-
dated exclusively by workers within the group. This additional
layer of hashing enables support for more than 64 workers.

In practice, however, machines with very high core counts are
seldom used due to the increased blast radius of failures. Instead, we
typically deploymultiple 32-core VMs to build our L7 LBs, achieving
comparable throughput while reducing cost (as a high-end machine
is much more expensive than multiple mid-range machines offering
equivalent performance) and limiting failure impact.
Howworker failures impact tenant services? Our L7 LB needs
to support numerous complex and frequently evolving application-
layer protocols such as TLS and HTTP/3, necessitating frequent
code updates all the time. Even with thorough testing and canary re-
leases, worker crashes from corner cases cannot be fully eliminated.
For instance, Nginx reported 51 bugs from 2024.9 to 2025.1 [39]. Our
L7 LB is likely to encounter similar core dumps. When a worker
crashes, both epoll exclusive and reuseport exhibit critical flaws.

Reuseport. The stateless hashing in reuseport may direct traffic to
hung or crashed workers, leading to improper request handling.
Based on our experience, it typically takes tens of seconds to detect
worker crashes (e.g., via proactive probing in the cloud [49, 56, 63,
65, 72, 76]). For an LB with 32 workers, this results in roughly 1/32
of tenant traffic being impacted during this detection time window.
Epoll exclusive. Epoll exclusive avoids assigning new connections to
hung workers, but uneven load distribution can concentrate connec-
tions on a few workers. This raises the risk of severe tenant traffic
disruption if one of these heavily loaded workers crashes. In one
incident, a client issued an RFC-unsupported request, attempting
to upgrade from an HTTP/2 connection to a WebSocket connec-
tion [59], which triggered a crash. Although only a single worker
was affected, over 70% of connections had to be re-established. The
tenant’s server became overloaded due to an extremely high CPS,
resulting in a recovery time of several dozen minutes.
Hermes. Hermes can balance the load across all workers, mitigating
the risk of a large blast radius caused by traffic concentrating on
a few workers. Additionally, Hermes detects worker anomalies by
tracking the event loop entry timestamp, allowing it to quickly
bypass unresponsive workers and minimize service downtime.
Will multi-tenancy/multiple ports undermine the benefits
ofHermes?We initially hypothesize that the load imbalance caused
by epoll exclusive, where new connections are disproportionately
handled by the last worker added via epoll_ctl(), could be mitigated
in a multi-tenant L7 LB by deliberately assigning different workers
as the “last added” for different ports serving different tenants. In
theory, this could scatter tenant traffic across workers. However,
this assumption does not hold in practice due to two key reasons:

First, tenant traffic is highly dynamic. Once a worker is deliber-
ately registered as the “last added” for a given port, this worker-
to-port assignment remains fixed. If traffic across different ports is
evenly distributed, this static assignment indeed effectively scatters
tenant traffic across workers. However, in practice, whether a port
receives significant traffic at runtime is unpredictable. Moreover,
since #ports (O(10K)) vastly exceeds #workers (O(10)), it is almost
certain that multiple ports will share the same “last added” worker.
If those ports simultaneously receive bursty traffic, load imbalance
will still occur, rendering such static worker assignment ineffective.

Second, tenant traffic is heavily skewed. A small number of top
tenants contribute the majority of traffic (e.g., the top three tenants
account for 40%, 28%, and 22% of the overall traffic in one of our
regions, and 23%, 10%, and 4% in another). This means that even if
most ports are well scattered across workers, the dominant tenants
will still concentrate load on only a few workers.

In contrast, Hermes provides stable and fine-grained control via
userspace-directed scheduling, ensuring robust and balanced load
distribution despite traffic dynamics or skew.

For page limit, we leave more experiences to Appendix.

8 Related Work
With the rise of NFV [70], traffic load balancing across CPU cores
becomes critical for software middlebox performance [15, 16, 40–
43, 45, 46, 51–53, 62, 67–69, 75]. Among these, most studies focus on
packet-granularity load balancing for L3/L4 forwarding-intensive
tasks [15, 16, 40–42, 52, 69, 75], e.g., RSS++ [40] performs packet
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scheduling at the NIC by reprogramming its RSS indirection ta-
ble [16]. This differs from L7 load balancing, where userspace work-
ers are selected by the kernel to handle incoming connections.
Some studies build custom request schedulers to optimize tail la-
tency [45, 46, 51, 53, 62, 67, 68]. These systems typically host more
workers than CPU cores and allowworkers tomigrate between CPU
cores. By contrast, our L7 LBs adopt a worker-to-CPU core binding
strategy to reduce context switch overhead. Moreover, we prefer
the fully validated Linux epoll for stability and lower maintenance
costs, avoiding ties to specialized OSes [68] or hardware [45, 53].

A few studies focus on L7 LBs but do not address intra-server
load balancing [48, 60, 71, 74]. [48] addresses scalability and avail-
ability of cloud L7 LBs. [60] leverages SmartNICs to offload L7 LBs.
[71] relies on programmable switches to accelerate L7 LBs. [74]
uses direct server return to reduce the load on L7 LBs. They all can
benefit from Hermes. Based on our experience, userspace workload
handling in L7 LBs consumes more CPU than kernel-space connec-
tion management, and thus requires more optimization efforts.

In 2015, the Linux community discussed fairness issues in epoll
exclusive, and proposed epoll rr as a workaround [34]. However,
epoll rr has not been merged into the kernel due to its cache-
unfriendly behavior [23]. Cloudflare also reported load imbalance
of epoll exclusive in its Nginx-based servers and proposed using
reuseport as a remedy [37]. However, reuseport’s stateless hash-
ing may perform poorly in skewed workloads. Recently, the Linux
community proposed sched_ext, allowing users to customize pro-
cess schedulers with eBPF [13, 28]. The vision of userspace-defined
scheduling in sched_ext aligns with Hermes. The difference is that
sched_ext schedules processes, whereas Hermes schedules connec-
tions. As Linux’s next-generation asynchronous I/O framework,
io_uring [17] uses a default interrupt mode with a fixed wakeup
order (similar to epoll, but in FIFO order), which may cause uneven
process load. Hermes can also be extended to improve io_uring.

With the SO_ATTACH_REUSEPORT_EBPF hook introduced in
Linux 4.5 [12], applications can override the default hash-based
reuseport socket selection using eBPF programs. Facebook lever-
ages this to steer traffic during update releases [61]. Nginx adopts
this to schedule traffic with the same QUIC connection ID to the
same worker [21]. Additionally, Cloudflare designs a similar pro-
grammable socket selection mechanism, sk_lookup [7], that enables
flexible scheduling by directing incoming traffic to specific listening
sockets [47]. In contrast to their static or application-defined traffic
steering logic, Hermes performs closed-loop connection dispatch
by dynamically adapting to worker status at runtime.

9 Conclusion
This work addresses the challenge of balancing connection distri-
bution in multicore L7 LBs. To overcome the limitations of inter-
worker load balancing in existing epoll mechanisms, we present
Hermes, a userspace-directed I/O event notification frameworkwith
closed-loop connection dispatch. By leveraging eBPF to override
the reuseport socket selection, Hermes adaptively selects the most
available worker based on userspace status, reducing CPU overload
risks. Hermes is also applicable to other epoll-based applications.
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Appendices
Appendices are supportingmaterial that has not been peer-reviewed.

A Supplementary Code Examples
A.1 Original Epoll Event Loop

1 // initialize
2 // create and bind listening sockets ( listen_fds ) to all ports , omitted
3 // create the epoll instance
4 ep_fd = epoll_create () ;
5 for ( ls : listen_fds ) {
6 event−>handler = accept_handler ; // to handle the first event
7 // add the listening socket to the epoll instance
8 epoll_ctl (ep_fd, EPOLL_CTL_ADD, ls, event);
9 }
10 // infinite event loop
11 while (1) {
12 event_num = epoll_wait(ep_fd, event_list , MAX_EVENTS, timer);
13 // handle currently available events returned from epoll_wait ()
14 for (event : event_list ) {
15 event−>handler(event) ;
16 }
17 }
18 // process new connections
19 accept_handler () {
20 conn_fd = accept () ;
21 // ... omitted
22 event−>handler = other_handler ; // e . g ., read HTTP header/body
23 // add the new connection to the epoll instance
24 epoll_ctl (ep_fd, EPOLL_CTL_ADD, conn_fd, event);
25 }
26 // handle other events
27 other_handler () {
28 // ... omitted
29 if ( err | fin ) {
30 epoll_ctl (ep_fd, EPOLL_CTL_DEL, conn_fd, event);
31 close (conn_fd) ;
32 }
33 }

Figure A1: Simplified epoll event loop for connection pro-
cessing in a worker process.

A.2 LIFO Wakeup Behavior of Epoll Exclusive
1 static void __wake_up_common(wait_queue_head_t ∗q, unsigned int mode, int

nr_exclusive, int wake_flags, void ∗key)
2 {
3 wait_queue_t ∗curr , ∗next ;
4 list_for_each_entry_safe ( curr , next , &q−>task_list , task_list ) {
5 unsigned flags = curr−>flags ;
6 if ( curr−>func(curr , mode, wake_flags, key) &&
7 ( flags & WQ_FLAG_EXCLUSIVE) && !−−nr_exclusive)
8 break;
9 }
10 }

Figure A2: Epoll exclusive walks the list of waiters for the
shared socket and wakes up the first waiter that is idle
(blocked on epoll_wait()) and ready to handle the incoming
events (Linux kernel source code).

B Walkthrough Examples of Existing Epoll
Modes and Hermes

An example demonstrating epoll exclusive and reuseport.
We use Fig. A3 to show the workload imbalance with epoll exclu-
sive and reuseport. The input sequence of requests from different

connections is a,b1,b2,b3,b4, and the processing time of a is twice
that of each b. For epoll exclusive, the new connections will be
prioritized toW3 unless it is busy. For epoll with reuseport, when
W1 is already processing a, its stateless hashing may still dispatch
new connections to this busy worker.

b4

Requests from different
connections

b3 b2 b1 a

Epoll exclusive Reuseport

W1

W2

W3

b1 b2

a b3 b4

W1

W2

W3

b1

b2
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b4

b3

Figure A3:Workload imbalance cases with two epoll modes.

A walkthrough example of Hermes. We use the previous ex-
ample on request scheduling (in Fig. A3) to show how Hermes’s
scheduling strategy outperforms epoll exclusive and epoll with
reuseport. The input sequence of requests from different connec-
tions is a,b1,b2,b3,b4. Request a contains two events, with each
event taking 2t to process. Each request b also contains two events,
with each event taking 1t to process. A worker process is consid-
ered unavailable if its processing time exceeds 2t . The step-by-step
request scheduling process with Hermes is shown in Fig. A4.
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Figure A4: Balanced workload scheduling with Hermes.

The scheduling starts at t0, with all worker processes available
and both busy and conn initialized to 0 for all workers.W1,W2,W3
are all able to accept new connections.

At t1, assumeW1 takes request a, its busy and conn counts in-
crease. As the request of the new connection involves two events, its
busy rises to 2 and conn rises to 1, leaving onlyW2 andW3 available
to accept new connections.

At t2, supposeW2 takes the next request b1, with its busy and
conn increased to 2 and 1, respectively. Now, onlyW3 can accept
new connections.

At t3, afterW3 accepts request b2, we find that the request a on
W1 has consumed too much CPU time, makingW1 unavailable. At
this time, asW2 has processed one event, its busy decreases to 1,
makingW2 the next scheduling option.

At t4 and t5,W2 andW3 handle the next b3 and b4. At t5,W1
becomes available again as all events have been processed.

This example demonstrates that Hermes can evenly distribute
requests to achieve inter-worker load balancing.

C Additional Experiences
Whyexportworker statusmetrics fromuserspace rather than
query them directly in the kernel? While the metrics used by
Hermes can, in theory, be obtained within the kernel, collecting
them there incurs overhead higher than expected. This overhead
stems from a fundamental asymmetry between the kernel and
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Figure A5: CDF of #forwarding rules per port in a region.

userspace: the kernel operates with a global scope and has visibility
into all system activities, but it lacks the application-specific context
necessary to identify which subset of data is relevant for a given
scheduling requirement without explicit guidance from userspace.
Consequently, even if metrics collection were performed in the
kernel, userspace programs would still need to convey their con-
text and intent, resulting in frequent and costly kernel-userspace
interactions.

Hermes instead collects metrics and makes scheduling decisions
entirely in userspace, passing only the scheduling results back to
the kernel. This design yields two key benefits. First, it reduces
kernel-userspace communication by synchronizing only the sched-
uling results instead of a large set of raw metrics. Second, it retains
complex scheduling logic in userspace, circumventing the limited
programmability of eBPF and enabling significantly greater flexi-
bility. For instance, our scheduler exposes an HTTP interface that
allows dynamic policy updates, supports fallbacks to reuseport, and
facilitates rapid iteration of future scheduling algorithms.
Load balancing vs cache locality. Cache-aware connection dis-
patch, such as consistently directing requests with the same DIP and
Dport (which may access the same data) to the same worker, can
improve efficiency in many L7 scenarios (e.g., databases and CDNs)
by maximizing cache hits. However, based on our experience, such
cache locality is largely unnecessary for L7 LBs in multi-tenant
public clouds, for two reasons. First, there is no data locality: the L7
LB acts as a middlebox and does not cache any tenant data. Second,
there is no code locality: as shown in Fig. A5, tenant forwarding
rules vary significantly, with different rules triggering different
code paths. As a result, even if all traffic from a tenant is directed
to the same CPU core, instruction and data cache reuse remains
limited, offering no clear efficiency gain. In practice, metrics such
as throughput, latency, and SLA adherence are far more critical to
both tenants and cloud service providers. Accordingly, Hermes is
designed with the primary goal of achieving balanced load distri-
bution rather than preserving cache locality.

Despite this, as a versatile framework, Hermes can still be ex-
tended to support cache-aware scheduling for workloads that may
benefit from it. It introduces a group-based scheduling model that
enables balancing cache locality and load distribution. Specifically,
Hermes partitions workers into groups. Upon a new connection,
the dispatcher uses the DIP and Dport to select a group via hashing,
and then selects a worker within the group using a bitmap that
reflects runtime worker load status from userspace. For example,
in Fig. A6, a new connection is mapped to Group1 via hashing, and
Worker2 is chosen based on the bitmap 01 to accept the connection.
This design ensures that requests with the same DIP and Dport

Worker1 Worker2 Worker3 Worker4

bitmap: 01 bitmap: 11

Hermes for CDN/Redis

Group1 Group2

New traffic

1. Select group according to hash(DIP&Dport)
2. Select worker accroding to each bitmap

Figure A6: Hermes for applications requiring cache locality.

are directed to the same group (preserving locality), while load is
still distributed across multiple workers (ensuring balance). The
grouping granularity controls the trade-off.

By comparison, existing kernel-based mechanisms provide par-
tial and inflexible support for cache locality. In epoll exclusive, the
LIFO wakeup policy unintentionally concentrates traffic onto tail-
added workers, increasing their cache hits. In reuseport, hashing
on the 4-tuple consistently routes similar connections to the same
worker, offering a degree of locality. However, both mechanisms
suffer from imbalanced load distribution and rely on hardcoded
in-kernel policies that are difficult to adjust or override. Hermes
generalizes these mechanisms: with a single group, it behaves like
standard Hermes; with one worker per group, it reduces to reuse-
port. Unlike kernel-fixed strategies, Hermes enables fine-grained
control over the trade-off between cache locality and load balance.
Exception handling case 1: single worker hangs.Many popu-
lar L7 LBs (e.g., Nginx) use epoll in edge-triggered mode to handle
events. Once a socket state changes (e.g., data arrival), the worker
is notified and must drain the buffer completely; otherwise, no fur-
ther events will be delivered. In extreme cases where the upstream
network is fast but downstream processing is time-consuming (e.g.,
SSL encryption or data compression offloaded to the L7 LB), the
rate at which data is consumed from the buffer can fall behind the
rate at which it is filled. As a result, the worker becomes trapped
in a loop of reading, processing, and reacting to new data, unable
to return to the main event loop. When this occurs, requests from
both new and existing connections assigned to the worker cannot
be processed in a timely manner.

Hermes offers solutions to mitigate this abnormal condition:
1. For new connections. Hermes tracks the timestamp of each

worker’s most recent entry into the epoll event loop. If this times-
tamp is not updated for a long time, Hermes marks the worker as
unavailable and stops assigning new connections to it. Similarly,
epoll exclusive will not assign new connections to a busy worker. In
contrast, reuseport employs stateless hashing, which may continue
to schedule new connections to the already overloaded worker,
exacerbating the worker hang issue.

2. For existing connections. To minimize overhead from cache
misses, context switches, and inter-core synchronization, modern
L7 LBs typically bind the handling of one connection to a single
CPU core. This affinity makes it difficult to migrate established
connections between workers. When a worker hangs, events on
its associated connections are stalled until a long-running task
completes. In our cloud, there have been cases where the request
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processing delay surged from 30ms to 440s. If the delay exceeds the
client’s timeout threshold, frequent disconnections occur.

To mitigate the impact, Hermes triggers proactive service degra-
dation: when a CPU core remains highly utilized, Hermes sends
TCP RSTs to terminate a subset of connections, allowing them
to reconnect and be rescheduled to healthy workers (filtered by
Hermes). Although proactively disconnecting connections is no-
ticeable to tenants, most can tolerate it. Even if some connections
are quickly disconnected and reconnected, as long as application-
layer requests return valid results, the end user experience is not
significantly affected. In other words, L7 users prioritize the even-
tual success of their requests and the correctness of service logic,
even at the expense of L4 connection stability. Additionally, tenants
that frequently trigger worker hangs are migrated to a sandbox,
enabling physical isolation to prevent interference with others.
Exception handling case 2: all workers hang. In production,
we have observed severe traffic bursts that drive CPU utilization of
all workers on an L7 LB device beyond acceptable thresholds. At
this point, node-local scheduling becomes ineffective, necessitating
a transition to cluster-wide scheduling.

Hermes offers solutions to this abnormal situation:
1. For network attacks. As traffic ingress points, L7 LBs are fre-

quent targets of SYN flood and Challenge Collapsar (CC) attacks,

which can lead to CPU exhaustion across all workers. Hermes lever-
ages anomaly detection techniques to identify malicious traffic
patterns and promptly migrates the directly affected tenants to
isolated sandboxes. This prevents them from degrading the perfor-
mance of other tenants. Once the migration is complete, CPU usage
on the original workers returns to normal.

2. For traffic surges from legitimate services. For legitimate work-
load surges, Hermes employs a phased scaling strategy to alleviate
pressure on workers. Each tenant may purchase one or more L7 LB
instances, which are deployed on VM-based L7 LB devices provi-
sioned within our cloud infrastructure. To isolate failures across
tenants, cloud service providers usually adopt shuffle sharding [38],
ensuring that each tenant’s L7 LB instance is deployed on a subset
of VMs, which are further managed in groups.

To handle worker overload progressively, Hermes enters the
following three phases:

Phase1: During traffic surges, we first perform a scale-out opera-
tion by distributing the traffic load of the overloaded L7 LB instance
across other existing VM groups.

Phase2: If Phase1 fails to alleviate the overload, we scale up the
instance by adding more available VMs to its existing VM groups.

Phase3: If overload persists, we provision new VMs and create
additional VM groups for the instance to absorb the overflow traffic.
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